Page 106 - 2019_06-Haematologica-web
P. 106

A. Agraz-Doblas et al.
acute lymphoblastic leukemia in infants.
Blood. 2010;115(14):2835–2844.
40. Chillón MC, Gómez-Casares MT, López-
Jorge CE, et al. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4 and MLL-germline acute lym- phoblastic leukemia. Leukemia. 2012;26(11): 2360–2366.
41. Boelens JJ, Aldenhoven M, Purtill D, et al. Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative condi- tioning Key Points. Blood. 2013;121(10): 3981–3987.
42. Bashford-Rogers RJM, Palser AL, Huntly BJ, et al. Network properties derived from deep sequencing of human B-cell receptor reper- toires delineate B-cell populations. Genome Res. 2013;23(11):1874–1884.
43. Bruggemann M, Schrauder A, Raff T, et al. Standardized MRD quantification in European all trials: Proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia. 2010;24(3):521– 535.
44. Driessen EMC, van Roon EHJ, Spijkers- Hagelstein JAP, et al. Frequencies and prog- nostic impact of RAS mutations in MLL- rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937– 944.
45. Tamai H, Miyake K, Takatori M, et al. Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lympho- mogenicity in a transgenic mouse model. Leukemia. 2011;25(5):888–891.
46. Elder A, Bomken S, Wilson I, et al. Abundant
and equipotent founder cells establish and maintain acute lymphoblastic leukaemia. Leukemia. 2017;31(12):2577–2586.
47. Prieto C, López-Millán B, Roca-Ho H, et al. NG2 antigen is involved in leukemia inva- siveness and central nervous system infiltra- tion in MLL-rearranged infant B-ALL. Leukemia. 2018;32(3):633–644.
48. Jansen MWJC, Corral L, van der Velden VHJ, et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia. 2007;21(4):633– 641.
49. Hotfilder M, Röttgers S, Rosemann A, et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primi- tive lymphoid-restricted CD34+CD19-cells. Cancer Res. 2005;65(4):1442–1449.
50. Bergmann AK, Castellano G, Alten J, et al. DNA methylation profiling of pediatric B- cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites. Pediatr Blood Cancer. 2017;64(3):e26251.
51. Malouf C, Ottersbach K. The fetal liver lym- phoid-primed multipotent progenitor pro- vides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia. Haematologica. 2018 Jun 14. [Epub ahead of print]
52. Kowarz E, Burmeister T, Lo Nigro L, et al. Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4MLL fusion allele. Leukemia. 2007;21(6):1232– 1238.
53. Trentin L, Giordan M, Dingermann T, Basso G, Te Kronnie G, Marschalek R. Two inde-
pendent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients. Eur J Haematol. 2009;83(5):406–419.
54. Kühn A, Löscher D, Marschalek R. The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism. Oncotarget. 2016;7(23):35341–35352.
55. Wilkinson AC, Ballabio E, Geng H, et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep. 2013;3(1):116–127.
56. Benedikt A, Baltruschat S, Scholz B, et al. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia. 2011;25(1): 135–144.
57. Scholz B, Kowarz E, Rössler T, Ahmad K, Steinhilber D, Marschalek R. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential func- tions. Am J Blood Res. 2015;5(1):10–24.
58. Mück F, Bracharz S, Marschalek R. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. Am J Blood Res. 2016;6(3):28–45.
59. van Zelm MC, van der Burg M, de Ridder D, et al. Ig gene rearrangement steps are initiat- ed in early human precursor B cell subsets and correlate with specific transcription fac- tor expression. J Immunol. 2005;175(9): 5912–5922.
60. Böiers C, Richardson SE, Laycock E, et al. A human IPS model implicates embryonic B- myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev Cell. 2018;44(3):362–377.e7.
1188
haematologica | 2019; 104(6)


































































































   104   105   106   107   108