Page 47 - 2019_05-HaematologicaMondo-web
P. 47

CRISPR/Cas9 gene editing in hematology
27. Pittermann E, Lachmann N, MacLean G, et al. Gene correction of HAX1 reversed Kostmann disease phenotype in patient-spe- cific induced pluripotent stem cells. Blood Adv. 2017;1(14):903-914.
28. Kaufman DS. Tu-mor(e) blood cells from human pluripotent stem cells. Blood. 2013;12188):1245-1246.
29. Sürün D, Schwäble J, Tomasovic A, et al. High efficiency gene correction in hematopoietic cells by donor-template-free CRISPR/Cas9 genome editing. Mol Ther Nucleic Acids. 2018;10:1-8.
30. Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S. Engineering human tumour-associated chro- mosomal translocations with the RNA-guid- ed CRISPR-Cas9 system. Nat Commun. 2014;5:3964.
31. Castaño J, Herrero AB, Bursen A, et al. Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA dam- age repair. Oncotarget. 2016;7(21):30440- 30452.
32. Reimer J, Knöß, S, Labuhn M, et al. CRISPR- Cas9-induced t(11;19)/MLL-ENL transloca- tions initiate leukemia in human hematopoi- etic progenitor cells in vivo. Haematologica. 2017;102(9):1558-1566.
33. Rabbitts TH, Appert A, Chung G, et al. Mouse models of human chromosomal translocations and approaches to cancer therapy. Blood Cells Mol Dis. 2001;27(1): 249-259.
34. Zhou Y, Zhu S, Cai C, et al. High-through- put screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509(7501):487-491.
35. Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32(9):941-946.
36. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug tar- gets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33(6):661- 667.
37. Rathe SK, Moriarity BS, Stoltenberg CB, et al. Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia. Sci Rep. 2014; 4:6048.
38. Mou H, Kennedy Z, Anderson DG, Yin H, Xue W. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 201;7(1):53.
39. Horiuchi K, Perez-Cerezales S, Papasaikas P, et al. Impaired spermatogenesis, muscle, and erythrocyte function in U12 intron splicing- defective zrsr1 mutant mice. Cell Rep. 2018;23(1):143-155.
40. Yen CT, Fan MN, Yang YL, Chou SC, Yu IS, Lin SW. Current animal models of hemo- philia: the state of the art. Thromb J. 2016;14(Suppl 1):22 eCollection 2016.
41. Xiang P, Wei W, Hofs N, et al. A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1. Blood Adv. 2017;1(24):2225-2235.
42. Wang H, Yang H, Shivalila CS, et al. One- step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910- 918.
43. Zhou J, Shen B, Zhang W, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineer- ing. Int J Biochem Cell Biol. 2014;46:49-55.
44. Sano S, et al. CRISPR-Mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular dis- ease. Circ Res. 2018;123(3):335-341.
45. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis devel- opment in mice. Science. 2017;355(6327): 842-847.
46. Aubrey BJ, Kelly GL, Kueh AJ, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10(8):1422-1432.
2018;29(3):366-380.
61. Wang G, Zhao N, Berkhout B, Das, AT.
CRISPR-Cas based antiviral strategies
against HIV-1. Virus Res. 2018;244:321-332. 62. ZhuW,LeiR,LeDuffY,etal.The CRISPR/Cas9 system inactivates latent HIV-
1 proviral DNA. Retrovirology. 2015;12:22. 63. Paczesny S, Pavletic SZ, Bollard CM. Introduction to a review series on emerging immunotherapies for hematologic diseases.
Blood. 2018;131(24):2617-2620.
64. Legut M, Dolton G, Mian AA, Ottmann OG,
Sewell AK. CRISPR-mediated TCR replace- ment generates superior anticancer transgenic T cells. Blood. 2018;131(3):311-322.
65. Xia AL, He QF, Wang JC, et al. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet. 2019;56(1):4-
47. Gundry MC, Brunetti L, Lin A, et al. Highly
Efficient Genome Editing of Murine and
Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep. 2016;17(5):1453-
1461. 9.
48. Tothova Z, Krill-Burger JM, Popova KD, et al. Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell. 2017;21(4):547- 555.e8.
49. Hussaini MO, Mirza AS, Komrokji R, Lancet J, Padron E, Song J. Genetic landscape of acute myeloid leukemia interrogated by next-generation sequencing: a large cancer center experience. Cancer Genomics Proteomics. 2018;15(2):121-126.
50. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372).
51. Zhang H, McCarty N. CRISPR editing in biological and biomedical investigation. J Cell Biochem. 2017;118(12):4152-4162.
52. Xie F, Ye L, Chang JC, et al. Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9): 1526-1533.
53. Song B, Fan Y, He W, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 sys- tem. Stem Cells Dev. 2015;24(9):1053-1065.
54. Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192-197.
55. Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015; 33(5):1470-1479.
56. Ye L, Wang J, Tan Y, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and beta-thalassemia. Proc Natl Acad Sci U S A. 2016;113(38): 10661- 10665.
57. Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat beta-hemo- globinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22(9):987-990.
58. Osborn M, Lonetree CL, Webber BR, et al. CRISPR/Cas9 targeted gene editing and cel- lular engineering in Fanconi anemia. Stem Cells Dev. 2016;25(20):1591-1603.
59. Rio P, Navarro S, Bueren JA. Advances in gene therapy for Fanconi anemia. Hum Gene Ther. 2018;29(10):1114-1123.
60. Gutierrez-Guerrero A, Sanchez-Hernandez S, Galvani G, et al. Comparison of zinc fin- ger nucleases versus CRISPR-specific nucle- ases for genome editing of the Wiskott- Aldrich syndrome locus. Hum Gene Ther.
66. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate uni- versal CAR T cells resistant to PD1 inhibi- tion. Clin Cancer Res. 2017;23(9):2255-2266.
67. Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113-117.
68. Liu X, Zhao Y. CRISPR/Cas9 genome edit- ing: Fueling the revolution in cancer immunotherapy. Curr Res Transl Med. 2018;66(2):39-42.
69. Aryal NK, Wasylishen AR, Lozano G. CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo. Cell Death Dis. 2018;9(11):1099.
70. Iyer V, Shen B, Zhang W, et al. Off-target mutations are rare in Cas9-modified mice. Nat Methods. 2015;12(6):479.
71. Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR- Cas9 nucleases. Nat Rev Genet. 2016;17(5):300-312.
72. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR- Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8): 765-771.
73. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonu- clease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-771.
74. Devkota S. The road less traveled: strategies to enhance the frequency of homology- directed repair (HDR) for increased efficien- cy of CRISPR/Cas-mediated transgenesis. BMB Rep. 2018;51(9):437-443.
75. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430-446.
76. Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. bioRxiv. 2018;243345.
77. Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med. 2018;10(1).
78. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927-930.
79. Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939-946.
80. Kohn DB, Porteus MH, Scharenberg AM. Ethical and regulatory aspects of genome editing. Blood. 2016;127(21):2553-2560.
81. Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32(2):101-113.
haematologica | 2019; 104(5)
893


































































































   45   46   47   48   49