Page 33 - 2019_05-HaematologicaMondo-web
P. 33

Evolutionary trajectory of AML
al-intrinsic as well as environmental factors. Both factors are influenced by each patient’s germline background. We can improve our understanding firstly by depicting the exact route that pre-leukemic clones take on their way to becoming AML. It is important to remember that the trajectory of these clones does not end when patients achieve a complete (even molecular) remission. Residual, as well as new pre-leukemic clones, continue to evolve
along the same path. Familiarizing ourselves with the ontogeny of AML and incorporating it into clinical prac- tice will expand our therapeutic opportunities and grant us additional time points for intervention. Most impor- tantly, a truly holistic treatment must also consider the environmental pressures under which AML evolved and address them. This will give a comprehensive meaning to the term "cure".
References
1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
2. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136-1152.
3. Estey E. Acute myeloid leukemia: 2016 update on risk-stratification and manage- ment. Am J Hematol. 2016;91(8):824-846.
4. The Cancer Genome Atlas Research Network. Genomic and epigenomic land- scapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059- 2074.
5. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(9):2209-2221.
6. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415- 421.
7. McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA. Impact of deleteri- ous passenger mutations on cancer progres- sion. Proc Natl Acad Sci U S A. 2013;110(8):2910-2915.
8. Malcovati L, Gallì A, Travaglino E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129(25):3371-3378.
9. Ableson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559 (7714):400-404.
10. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoi- etic stem cells in acute leukaemia. Nature. 2014;506(7488):328-333.
11. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regula- tors and persist in remission. Proc Natl Acad Sci U S A. 2014;111(7):2548-2553.
12. Lal R, Lind K, Heitzer E, et al. Somatic TP53 mutations characterize preleukemic stem cells in acute myeloid leukemia. Blood. 2017;129(18):2587-2591.
13. Jaiswal S, Fontanillas P, Flannick J, et al. Age- related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371 (26):2488-2498.
14. Genovese G. Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
15. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbour- ing AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7: 12484.
16. Acuna-Hidalgo R, Sengul H, Steehouwer M, et al. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis- Associated Mutations throughout Adult Life. Am J Hum Genet. 2017;101(1):50-64.
17. Lee-Six H, Øbro NF, Shepherd MS, et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561(7724):473-478.
18. Mckerrell T, Park N, Moreno T, et al. Leukemia associated somatic mutations drive distinct patterns of age related clonal hemopoiesis. Cell Rep. 2015;10(8):1239- 1245.
19. Lindsey RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367-1376.
20. Busque L, Buscarlet M, Mollica L, Levine RL. Concise review: age-related clonal hematopoiesis: stem cells tempting the devil. Stem Cells. 2018;36(9):1287-1294.
21. Buscarlet, M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phe- notypes and different genetic predisposi- tions. Blood. 2017;130(6):753-762.
22. Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018;24(7):1015-1023.
23. Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552-555.
24. Gibson CJ, Lindsley RC, Tchekmedyian V, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017;35(14):1598-1605.
25. Coombs CC, Zehir A, Devlin SM, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clini- cal outcomes. Cell Stem Cell. 2017;21(3): 374-382.
26. Hsu JI, Dayaram T, Tovy A, et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell stem Cell. 2018;23(5):700-713.
27. Kahn JD, Miller PG, Silver AJ, et al. PPM1D- truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018;132(11):1095-1105.
28. Lindsley RC, Saber W, Mar BG, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536-547.
29. Wong TN, Miller CA, Klco JM, et al. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood. 2016;127(7):893-897.
30. Lodé L, Ameur A, Coste T, et al. Single-
molecule DNA sequencing of acute myeloid leukemia and myelodysplastic syndromes with multiple TP53 alterations. Haematologica. 2018;103(1):e13-e16.
31. Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189-1199.
32. Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488-1495.
33. Broeker PL, Super HG, Thirman MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-relat- ed acute myeloid leukemia: correlation with scaffold attachment regions and topoiso- merase II consensus binding sites. Blood. 1996;87(5):1912-1922.
34. Shlush LI, Mitchell A, Heisler L, et al. Tracing the origins of relapse in acute myeloid leukemia to stem cells. Nature. 2017;547(7661):104-108.
35. Grove CS, Bolli N, Manes N, et al. Rapid parallel acquisition of somatic mutations after NPM1 in acute myeloid leukemia evo- lution. Br J Haematol. 2017;176(5):825-829.
36. Ivy A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016; 374(5):422-433.
37. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C. Intratumor heterogeneity: see- ing the wood for the trees. Sci Transl Med. 2012;4(127):127ps10.
38. Brunetti L, Gundry MC, Sorcini D, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34(3):499-512.
39. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472-1478.
40. Höllein A, Meggendorfer M, Dicker F, et al. NPM1 mutated AML can relapse with wild- type NPM1: persistent clonal hematopoiesis can drive relapse. Blood Adv. 2018;2(22):3118-3125.
41. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464.
42. Pemovska T, Kontro M, Yadav B, et al. Individualized systems medicine strategy to tailor treatments for patients with chemore- fractory acute myeloid leukemia. Cancer Discov. 2013;3(12):1416-1429.
43. Shouval R, Shlush LI, Yehudai-Resheff S, et al. Single cell analysis exposes intra-tumor heterogeneity and suggests that FLT3-ITD is a late event in leukemogenesis. Exp Hematol. 2014;42(6):457-463.
44. Abdelhamid E, Preudhomme C, Helevaut N,
haematologica | 2019; 104(5)
879


































































































   31   32   33   34   35