Page 179 - 2019_05-HaematologicaMondo-web
P. 179

Modulation of intermediary metabolism in cancer therapy
25 Khwairakpam AD, Shyamananda MS, Sailo BL, et al. ATP citrate lyase (ACLY): a prom- ising target for cancer prevention and treat- ment. Curr Drug Targets. 2015;16(2):156– 163.
26 Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10): 763–777.
27 Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369–1372.
28 Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017; 168(6):960–976.
29 Fresquet V, Rieger M, Carolis C, García- Barchino MJ, Martinez-Climent JA. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood. 2014;123(26): 4111–4119.
30 Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–388.
31 Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res. 2012;72(12):3069–3079.
32 Chen S, Dai Y, Harada H, Dent P, Grant S. Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak acti- vation and Bax translocation. Cancer Res. 2007;67(2):782–791.
33 Lin KH, Winter PS, Xie A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696.
34 Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21(2):178–184.
35 Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–18787.
36 Liu W, Le A, Hancock C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by onco- genic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109(23):8983–8988.
37 Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–669.
38 Vogler M, Weber K, Dinsdale D, et al. Different forms of cell death induced by putative BCL2 inhibitors. Cell Death Differ.
2009;16(7):1030–1039.
39 Vogler M, Dinsdale D, Dyer MJS, Cohen
GM. ABT-199 selectively inhibits BCL2 but not BCL2L1 and efficiently induces apopto- sis of chronic lymphocytic leukaemic cells but not platelets. Br J Haematol. 2013; 163(7):139–142.
40 Vogler M, Furdas SD, Jung M, Kuwana T, Dyer MJS, Cohen GM. Diminished sensitiv- ity of chronic lymphocytic leukemia cells to ABT-737 and ABT-263 due to albumin bind- ing in blood. Clin Cancer Res. 2010;16(16): 4217–4225.
41 Roberts AW, Seymour JF, Brown JR, et al. Substantial susceptibility of chronic lym- phocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30(5):488–496.
42 Varadarajan S, Poornima P, Milani M, et al. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent man- ner. Oncotarget. 2015;6(14):12668–12681.
43 Lucas CM, Milani M, Butterworth M, et al. High CIP2A levels correlate with an anti- apoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia. Leukemia. 2016;30(6):1273–1281.
44. Lee JS, Roberts A, Juarez D, et al. Statins enhance efficacy of venetoclax in blood can- cers. Sci Transl Med. 2018;10(445).
haematologica | 2019; 104(5)
1025


































































































   177   178   179   180   181