Page 29 - 2019_04-Haematologica-web
P. 29

Hematocrit and thrombotic risk in erythrocytosis
tifying and developing novel targeted therapies for these disorders. The evidence we have presented here points to favoring the use of myelosuppressive therapy for intermediate- and high-risk PV, as this approach has been proven to decrease the risk of thrombosis in PV. Furthermore, we trust that the urge to correct any abnor- mal laboratory data by a therapeutic intervention should be tempered by consideration of the risk-benefit ratio of any such intervention. The routine practice of phleboto- my for elevated hematocrit, with its inevitable iron defi- ciency (which leads to inhibition of PHD2, increased HIF, and increased erythropoietin) and potential detrimental thrombotic effects, should be re-evaluated. We hope that this review will encourage more studies to pursue the
challenge of defining the specific molecular basis of thrombosis in diverse types of polycythemia and ery- throcytosis. Improved knowledge of the pathophysiolo- gy of these entities should be extended to the develop- ment of targeted approaches for the prevention and ther- apy of thrombotic complications. A review of potential molecular mechanisms contributing to thrombosis in myeloproliferative neoplasms was published at the time of the submission of this manuscript.87
Acknowledgments
This work was supported in part by a grant from the National Institutes of Health, R01HL137991 (to JP), and institutional funds from the University of Illinois at Chicago.
References
1. PrchalJT.Primaryandsecondaryerythrocy- tosis. In: Lichtman MA, Williams WJ, eds. Williams Hematology 9th Edition. New York: McGraw Hill Medical; 2015.
2. Prchal JT, Semenza GL, Prchal J, Sokol L. Familial polycythemia. Science. 1995;268 (5219):1831-1832.
3. McMullin MF, Wu C, Percy MJ, Tong W. A nonsynonymous LNK polymorphism asso- ciated with idiopathic erythrocytosis. Am J Hematol. 2011;86(11):962-964.
4. Giani FC, Fiorini C, Wakabayashi A, et al. Targeted application of human genetic vari- ation can improve red blood cell production from Stem Cells. Cell Stem Cell. 2016;18 (1):73-78.
5. TuschlK,MillsPB,ParsonsH,etal.Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia--a new metabolic dis- order. J Inherit Metab Dis. 2008;31(2):151- 163.
6. Quadri M, Federico A, Zhao T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467-477.
7. Zmajkovic J, Lundberg P, Nienhold R, et al. A gain-of-function mutation in EPO in familial erythrocytosis. N Engl J Med. 2018;378(10):924-930.
8. Polyakova LA. [Familial erythrocytosis among inhabitants of the Chuvash ASSR. Problem Gematolog I Pereliv Krovi]. 1974;10:30-36.
9. AngSO,ChenH,HirotaK,etal.Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32(4):614-621.
10. Perrotta S, Nobili B, Ferraro M, et al. Von Hippel-Lindau-dependent polycythemia is endemic on the island of Ischia: identifica- tion of a novel cluster. Blood. 2006;107(2): 514-519.
11. Zhang X, Zhang W, Ma SF, et al. Iron defi- ciency modifies gene expression variation induced by augmented hypoxia sensing. Blood Cells Mol Dis. 2014;52(1):35-45.
12. GordeukVR,SergueevaAI,MiasnikovaGY, et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombo- sis and vascular abnormalities but not tumors. Blood. 2004;103(10):3924-3932.
13. Manalo DJ, Rowan A, Lavoie T, et al.
Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659-669.
14. Hickey MM, Lam JC, Bezman NA, Rathmell WK, Simon MC. von Hippel-Lindau muta- tion in mice recapitulates Chuvash poly- cythemia via hypoxia-inducible factor- 2alpha signaling and splenic erythropoiesis. J Clin Invest. 2007;117(12):3879-3889.
15. Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;376(22):2168-2181.
16. Sergeyeva A, Gordeuk VR, Tokarev YN, Sokol L, Prchal JF, Prchal JT. Congenital poly- cythemia in Chuvashia. Blood. 1997;89(6): 2148-2154.
17. Dintenfass L. A preliminary outline of the blood high viscosity syndromes. Arch Intern Med. 1966;118(5):427-435.
18. Thorling EB, Erslev AJ. The "tissue" tension of oxygen and its relation to hematocrit and erythropoiesis. Blood. 1968;31(3):332-343.
19. Fan FC, Chen RY, Schuessler GB, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol. 1980;238(4):H545-522.
20. Pearson TC, Humphrey PRD, Thomas DJ, al. e. Hematocrit, blood viscosity, cerebral blood flow, and vascular occlusion. In: Lowe GDO, ed. Clinical Aspects of Blood Viscosity and Cell Deformability,. New York: Springer-Verlag; 1981.
21. Monge C. Life in the Andes and chronic mountain sickness. Science. 1942;95(2456): 79-84.
22. Kershenovich S, Modiano M, Ewy GA. Markedly decreased coronary blood flow in secondary polycythemia. Am Heart J. 1992;123(2):521-523.
23. Conley CL, Russell RP, Thomas CB, Tumulty PA. Hematocrit values in coronary artery disease. Arch Intern Med. 1964;113: 170-176.
24. Jefferson JA, Escudero E, Hurtado ME, et al. Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet. 2002;359(9304):407-408.
25. Thomas DJ, du Boulay GH, Marshall J, et al. Cerebral blood-flow in polycythaemia. Lancet. 1977;2(8030):161-163.
26. Borzage MT, Bush AM, Choi S, et al. Predictors of cerebral blood flow in patients with and without anemia. J Appl Physiol (1985). 2016;120(8):976-981.
27. Wade JP, du Boulay GH, Marshall J, et al. Cerebral blood flow, haematocrit and vis- cosity in subjects with a high oxygen affini-
ty haemoglobin variant. Acta Neurol Scand.
1980;61(4):210-215.
28. Cui MH, Billett HH, Suzuka S, et al. Fetal
hemoglobin improves cerebral blood flow and decreases brain inflammation in trans- genic-sickle Mice. Blood. 2016;128(22):3639.
29. Papassotiriou I, Kister J, Griffon N, et al. Modulating the oxygen affinity of human fetal haemoglobin with synthetic allosteric modulators. Br J Haematol. 1998;102(5): 1165-1171.
30. Vongpatanasin W, Brickner ME, Hillis LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med. 1998;128(9):745-755.
31. Martin-Garcia AC, Arachchillage DR, Kempny A, et al. Platelet count and mean platelet volume predict outcome in adults with Eisenmenger syndrome. Heart. 2018; 104(1):45-50.
32. Thorne SA. Management of polycythaemia in adults with cyanotic congenital heart dis- ease. Heart. 1998;79(4):315-316.
33. Perloff JK, Marelli AJ, Miner PD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1993;87(6):1954- 1959.
34. Phornphutkul C, Rosenthal A, Nadas AS, Berenberg W. Cerebrovascular accidents in infants and children with cyanotic congeni- tal heart disease. Am J Cardiol. 1973;32(3): 329-334.
35. Cottrill CM, Kaplan S. Cerebral vascular accidents in cyanotic congenital heart dis- ease. Am J Dis Child. 1973;125(4):484-487.
36. Shinton R, Beevers G. Meta-analysis of rela- tion between cigarette smoking and stroke. BMJ. 1989;298(6676):789-794.
37. Kannel WB, Gordon T, Wolf PA, McNamara P. Hemoglobin and the risk of cerebral infarction: the Framingham study. Stroke. 1972;3(4):409-420.
38. Wannamethee G, Perry IJ, Shaper AG. Haematocrit, hypertension and risk of stroke. J Intern Med. 1994;235(2):163-168.
39. Mayer GA. Hematocrit and coronary heart disease. Can Med Assoc J. 1965;93(22):1151- 1153.
40. Hershberg PI, Wells RE, McGandy RB. Hematocrit and prognosis in patients with acute myocardial infarction. JAMA. 1972;219(7):855-860.
41. Lubarsky DA, Gallagher CJ, Berend JL. Secondary polycythemia does not increase the risk of perioperative hemorrhagic or thrombotic complications. J Clin Anesth. 1991;3(2):99-103.
haematologica | 2019; 104(4)
657


































































































   27   28   29   30   31