Page 168 - 2019_04-Haematologica-web
P. 168

C. Brieghel et al.
er, recommend using a cell line harboring a rare TP53mut predicted to encode functional p53, such as BRG-A (TP53:c.1060C>G), to avoid both risk of contamination and risk of omitting significant low burden mutations.34 We successfully achieved an LOD of 0.3% VAF, applied in previous studies of minor TP53muts,13,14,18 and could even lower the LOD to 0.2% VAF. As we were unable to prove any impact on newly diagnosed patients with IGHV-M, our results support the current guidelines recommending TP53 assessment only prior to treatment.12
This study furthers the identification of a clinically sig- nificant LOD for TP53muts in CLL. The method proposed here for analysis of minor TP53muts warrants validation across laboratories for a standard technical LOD for TP53muts. Subsequent validation and standardization of TP53 mutation assays within networks such as the European Research Initiative on CLL (ERIC, http://ericll.org) may provide the platform needed for collaborative multi- center analyses seeking to define a validated clinical LOD for TP53muts.
References
1. Parikh SA, Shanafelt TD. Prognostic factors and risk stratification in chronic lymphocyt- ic leukemia. Semin Oncol. 2016; 43(2):233- 240.
2. Pflug N, Bahlo J, Shanafelt T, et al. Development of a comprehensive prognos- tic index for patients with chronic lympho- cytic leukemia. Blood. 2014;124(1):49-62.
3. International CLLIPIwg. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta- analysis of individual patient data. Lancet Oncol. 2016;17(6):779-790.
4. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
5. Zenz T, Eichhorst B, Busch R, et al. TP53 Mutation and Survival in Chronic Lymphocytic Leukemia. J Clin Oncol. 2010; 28(29):4473-4479.
6. Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247- 3254.
7. Byrd JC, O'Brien S, James DF. Ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(13):1278-1279.
8. Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;1 6(2):169-176.
9. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2014;370(11):997-1007.
10. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):311-322.
11. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42.
12. Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analy- sis in chronic lymphocytic leukemia-update
on methodological approaches and results interpretation. Leukemia. 2018; 32(5):1070- 1080.
13. Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated sub- clones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139-2147.
14. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122-2130.
15. Blakemore S. The Contribution of Gene Mutations to Long-Term Clinical Outcomes: Data from the Randomised UK LRF CLL4 Trial. Blood. 2017;130(Suppl 1):259.
16. Yu L, Kim HT, Kasar SN, et al. Survival of Del17p CLL Depends on Genomic Complexity and Somatic Mutation. Clin Cancer Res. 2016;23(3):735-745.
17. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 dele- tions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705-711.
18. Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lym- phocytic leukemia. Leukemia. 2015; 29(4):877-885.
19. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal muta- tions in chronic lymphocytic leukemia. Cell. 2013;152(4):714-726.
20. Brown JR, Kay N. Chemoimmunotherapy Is Not Dead Yet in Chronic Lymphocytic Leukemia. J Clin Oncol. 2017;35(26):2989- 2992.
21. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760.
22. da Cunha-Bang C, Geisler CH, Enggaard L, et al. The Danish National Chronic Lymphocytic Leukemia Registry. Clin Epidemiol. 2016;8(1):561-565.
23. Team RC. R: A Language and Environment for Statistical Computing. 2017.
24. da Cunha-Bang C, Christiansen I, Niemann CU. The CLL-IPI applied in a population-
based cohort. Blood. 2016;128(17):2181-
2183.
25. Sutton LA, Ljungstrom V, Mansouri L, et al.
Targeted next-generation sequencing in chronic lymphocytic leukemia: a high- throughput yet tailored approach will facili- tate implementation in a clinical setting. Haematologica. 2015;100(3):370-376.
26. Delgado J, Salaverria I, Baumann T, et al. Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption. Haematologica. 2014;99(11):e231-e234.
27. Jeromin S, Haferlach C, Dicker F, Haferlach T, Kern C. Patients with TP53 disruption and IGHV Mutated Status Show Indolent Clinical Course: A Study on 1,327 Treatment-Naive CLL Cases. Blood. 2016; 128(22):4378.
28. Best OG, Gardiner AC, Davis ZA, et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia. 2009; 23(1):212-214.
29. Sutton LA, Hadzidimitriou A, Baliakas P, et al. Immunoglobulin genes in chronic lym- phocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica. 2017;102(6):968-971.
30. Murphy EJ, Neuberg DS, Rassenti LZ, et al. Leukemia-cell proliferation and disease pro- gression in patients with early stage chronic lymphocytic leukemia. Leukemia. 2017;31(6):1348-1354.
31. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
32. Puente XS, Bea S, Valdes-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015; 526(7574):519-524.
33. Wong TN, Ramsingh G, Young AL, et al. Role of TP53mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;2015(518):552-557.
34. Campomenosi P, Fronza G, Ottaggio L, et al. Heterogeneous p53 mutations in a Burkitt lymphoma from an AIDS patient with mon- oclonal c-myc and VDJ rearrangements. Int J Cancer. 1997;73(6):816-821.
796
haematologica | 2019; 104(4)


































































































   166   167   168   169   170