Page 159 - 2019_04-Haematologica-web
P. 159

CXCR4 and MYC dual targeting in DLBCL
References
1. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lym- phoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016 Sep 12. [Epub ahead of print]
2. Miyazaki K. Treatment of diffuse large B- cell lymphoma. J Clin Exp Hematop. 2016;56(2):79-88.
3. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lym- phoma identified by gene expression profil- ing. Nature. 2000;403(6769):503-511.
4. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313-2323.
5. Shain KH, Dalton WS, Tao J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene. 2015;34(36):4673-4682.
6. Allen CDC, Ansel KM, Low C, et al. Germinal center dark and light zone organ- ization is mediated by CXCR4 and CXCR5. Nat Immunol. 2004;5(9):943-952.
7. Blades MC, Manzo A, Ingegnoli F, et al. Stromal cell-derived factor 1 (CXCL12) induces human cell migration into human lymph nodes transplanted into SCID mice. J Immunol. 2002;168(9):4308-4317.
8. Foudi A, Jarrier P, Zhang Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvi- ronment in CXCR4-/- chimeric mice. Blood. 2006;107(6):2243-2251.
9. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repop- ulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845-848.
10. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothe- lial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289- 3296.
11. Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis--untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21(19):4278-4285.
12. Moreno MJ, Bosch R, eguez-Gonzalez R, et al. CXCR4 expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival. J Pathol. 2015;235(3):445-455.
13. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11(9):597-606.
14. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell- derived factor 1 (SDF-1). J Exp Med. 1996;184(3):1101.
15. Nagasawa T. The chemokine CXCL12 and regulation of HSC and B lymphocyte devel- opment in the bone marrow niche. Adv Exp Med Biol. 2007;602(69-75.
16. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and home- ostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43(3):461-466.
17. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107 (5):1761-1767.
18. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43-52.
19. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF- mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359(3):716-722.
20. Ping YF, Yao XH, Jiang JY, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediat- ed VEGF production and tumour angiogen- esis via PI3K/AKT signalling. J Pathol. 2011;224(3):344-354.
21. Sun X, Charbonneau C, Wei L, Yang W, Chen Q, Terek RM. CXCR4-targeted ther- apy inhibits VEGF expression and chon- drosarcoma angiogenesis and metastasis. Mol Cancer Ther. 2013;12(7):1163-1170.
22. Cho BS, Kim HJ, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J Intern Med. 2017;32(2):248-257.
23. Kast RE. Profound blockage of CXCR4 sig- naling at multiple points using the synergy between plerixafor, mirtazapine, and clotri- mazole as a new glioblastoma treatment adjunct. Turk Neurosurg. 2010;20(4):425- 429.
24. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29(5):591-599.
25. Liu T, Li X, You S, Bhuyan SS, Dong L. Effectiveness of AMD3100 in treatment of leukemia and solid tumors: from original discovery to use in current clinical practice. Exp Hematol Oncol. 2016;5(1):19.
26. Redjal N, Chan JA, Segal RA, Kung AL. CXCR4 inhibition synergizes with cyto- toxic chemotherapy in gliomas. Clin Cancer Res. 2006;12(22):6765-6771.
27. Uy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119(17):3917-3924.
28. Balsas P, Esteve-Arenys A, Roldan J et al. Activity of the novel BCR kinase inhibitor IQS019 in preclinical models of B-cell non- Hodgkin lymphoma. J Hematol Oncol. 2017;10(1):80.
29. Kawano Y, Kobune M, Yamaguchi M, et al. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a cocul- ture system with human telomerase catalyt- ic subunit (hTERT)-transfected human stro- mal cells. Blood. 2003;101(2): 532-540.
30. Bosch R, Dieguez-Gonzalez R, Cespedes MV, et al. A novel inhibitor of focal adhe- sion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood. 2011;118(16):4411-4420.
31. Cardesa-Salzmann TM, Colomo L, Gutierrez G, et al. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy. Haematologica. 2011;96(7):996-1001.
screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D lig- and shape matching and ligand-receptor docking. J Chem Inf Model. 2008;48(3): 509-533.
35. Ros-Blanco L, Anido J, Bosser R, et al. Noncyclam tetraamines inhibit CXC chemokine receptor type 4 and target glioma-initiating cells. J Med Chem. 2012;55(17):7560-7570.
36. Reinholdt L, Laursen MB, Schmitz A, et al. The CXCR4 antagonist plerixafor enhances the effect of rituximab in diffuse large B-cell lymphoma cell lines. Biomark Res. 2016;4:12.
37. Campo E. MYC in DLBCL: partners matter. Blood. 2015;126(22):2439-2440.
38. An J, Yang DY, Xu QZ, et al. DNA-depen- dent protein kinase catalytic subunit modu- lates the stability of c-Myc oncoprotein. Mol Cancer. 2008;7:32.
39. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14(19):2501-2514.
40. Banerjee C, Archin N, Michaels D, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012;92(6):1147-1154.
41. Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downreg- ulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest. 2013;123(6):2395-2407.
42. Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215-6224.
43. Chen J, Xu-Monette ZY, Deng L, et al. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lym- phoma. Oncotarget. 2015;6(8):5597-5614.
44. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor pro- motes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62(24):7203-7206.
45. Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer. 2011;104(12): 1805-1809.
46. Zhang Y, Zhao H, Zhao D, et al. SDF- 1/CXCR4 axis in myelodysplastic syn- dromes: correlation with angiogenesis and apoptosis. Leuk Res. 2012;36(3):281-286.
47. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vascu- logenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradia- tion in mice. J Clin Invest. 2010;120(3):694-
32. Moros A, Rodriguez V, Saborit-Villarroya I, 705.
et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia. 2014;28(10):2049-2059.
33. Perry AM, Cardesa-Salzmann TM, Meyer PN, et al. A new biologic prognostic model based on immunohistochemistry predicts survival in patients with diffuse large B-cell lymphoma. Blood. 2012;120(11):2290- 2296.
34. Pérez-Nueno VI, Ritchie DW, Rabal O, Pascual R, Borrell JI, Teixidó J. Comparison of ligand-based and receptor-based virtual
48. Juarez J, Dela PA, Baraz R, et al. CXCR4 antagonists mobilize childhood acute lym- phoblastic leukemia cells into the peripher- al blood and inhibit engraftment. Leukemia. 2007;21(6):1249-1257.
49. Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6206-6214.
50. Hu Y, Gale M, Shields J, et al. Enhancement of the anti-tumor activity of therapeutic monoclonal antibodies by CXCR4 antago- nists. Leuk Lymphoma. 2012;53(1):130-138.
haematologica | 2019; 104(4)
787


































































































   157   158   159   160   161