Page 120 - 2019_04-Haematologica-web
P. 120

R. Polak et al.
Acknowledgments
We thank all members of the research laboratory Pediatric Oncology of the Erasmus MC for their help in processing leukemic and mesenchymal stromal cell samples, in particular E. Bindels and B. de Rooij for scientific input and critical dis-
cussions; The Erasmus Optical Imaging Centre for providing support of CLSM; The Department of Hematology of the Erasmus MC for providing the use of CLSM and Flow Cytometers; The Vlietland Ziekenhuis for collecting and pro- viding cord blood.
References
1. Pui CH, Evans WE. Drug therapy - Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166- 178.
2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551-565.
3. Robison LL. Late effects of acute lym- phoblastic leukemia therapy in patients diagnosed at 0-20 years of age. Hematology Am Soc Hematol Educ Program. 2011;2011:238-242.
4. Goldman JM, Melo JV. Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451-1464.
5. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblas- tic leukemia. Proc Natl Acad Sci U S A. 1995;92(11):4917-4921.
6. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lym- phoblastic leukaemia. Oncogene. 2004;23(24):4275-4283.
7. Loh ML, Goldwasser MA, Silverman LB, et al. Prospective analysis of TEL/AML1-posi- tive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95- 01. Blood. 2006;107(11):4508-4513.
8. Stams WA, Beverloo HB, den Boer ML, et al. Incidence of additional genetic changes in the TEL and AML1 genes in DCOG and COALL-treated t(12;21)-positive pediatric ALL, and their relation with drug sensitivi- ty and clinical outcome. Leukemia. 2006;20(3):410-416.
9. van Delft FW, Horsley S, Colman S, et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood. 2011; 117(23):6247-6254.
10. Tsuzuki S, Seto M, Greaves M, Enver T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci U S A. 2004;101(22):8443-8448.
11. Hong D, Gupta R, Ancliff P, et al. Initiating and cancer-propagating cells in TEL-AML1- associated childhood leukemia. Science. 2008;319(5861):336-339.
12. Schindler JW, Van Buren D, Foudi A, et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and ini- tiate leukemia. Cell Stem Cell. 2009; 5(1):43-53.
13. Anderson K, Lutz C, van Delft FW, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356-361.
14. Fuka G, Kantner HP, Grausenburger R, et al. Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia. 2012;26(5):927-933.
15. Diakos C, Krapf G, Gerner C, et al. RNAi- mediated silencing of TEL/AML1 reveals a heat-shock protein- and survivin-depen-
dent mechanism for survival. Blood.
2007;109(6):2607-2610.
16. Mangolini M, de Boer J, Walf-
Vorderwulbecke V, Pieters R, den Boer ML, Williams O. STAT3 mediates oncogenic addiction to TEL-AML1 in t(12;21) acute lymphoblastic leukemia. Blood. 2013; 122(4):542-549.
17. Torrano V, Procter J, Cardus P, Greaves M, Ford AM. ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dys- regulated erythropoietin receptor. Blood. 2011;118(18):4910-4918.
18. Gefen N, Binder V, Zaliova M, et al. Hsa- mir-125b-2 is highly expressed in child- hood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia. 2010;24(1):89-96.
19. Palmi C, Fazio G, Savino AM, et al. Cytoskeletal Regulatory Gene Expression and Migratory Properties of B Cell Progenitors are Affected by the ETV6- RUNX1 Rearrangement. Mol Cancer Res. 2014;12(12):1796-1806.
20. Ford AM, Palmi C, Bueno C, et al. The TEL- AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest. 2009; 119(4):826-836.
21. Jaber N, Dou Z, Chen JS, et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A. 2012;109(6):2003-2008.
22. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20(6):355-362.
23. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463-477.
24. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132(1):27-42.
25. White E. Deconvoluting the context- dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401-410.
26. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and pre- diction of outcome in pediatric acute lym- phoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133-143.
27. Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 dif- ferentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.
28. Andersson A, Olofsson T, Lindgren D, et al. Molecular signatures in childhood acute leukemia and their correlations to expres- sion patterns in normal hematopoietic sub- populations. Proc Natl Acad Sci U S A. 2005;102(52):19069-19074.
29. Fine BM, Stanulla M, Schrappe M, et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood. 2004; 103(3):1043-1049.
30. van der Veer A, Waanders E, Pieters R, et al.
Independent prognostic value of BCR- ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood. 2013; 122(15):2622-2629.
31. Fuka G, Kauer M, Kofler R, Haas OA, Panzer-Grumayer R. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PLoS One. 2011;6(10):e26348.
32. Mackenzie AH. Antimalarial drugs for rheumatoid arthritis. Am J Med. 1983;75(6A):48-58.
33. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, et al. Hydroxychloroquine concentration- response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(6):1460-1469.
34. Rangwala R, Leone R, Chang YC, et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1369- 1379.
35. Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S, Inazawa J. Autophagy is required for cell survival under L-asparagi- nase-induced metabolic stress in acute lym- phoblastic leukemia cells. Oncogene. 2017; 36(30):4267-4276.
36. Pieters R, Hunger SP, Boos J, et al. L- asparaginase treatment in acute lym- phoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117(2):238-249.
37. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in mod- ifying drug response: challenges and oppor- tunities. Nat Rev Drug Discov. 2013; 12(3):217-228.
38. Vogl DT, Stadtmauer EA, Tan KS, et al. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxy- chloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10(8):1380-1390.
39. Maes H, Kuchnio A, Peric A, et al. Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell. 2014;26(2):190-206.
40. McAfee Q, Zhang Z, Samanta A, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phe- notype of a genetic autophagy deficiency. Proc Natl Acad Sci U S A. 2012; 109(21):8253-8258.
41. Miller S, Tavshanjian B, Oleksy A, et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science. 2010;327(5973): 1638-1642.
42. Ronan B, Flamand O, Vescovi L, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol. 2014;10(12):1013-1019.
43. Dowdle WE, Nyfeler B, Nagel J, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16(11):1069-1079.
748
haematologica | 2019; 104(4)


































































































   118   119   120   121   122