Page 155 - 2019_02-Haematologica-web
P. 155

CDK4/CDK6 inhibitors in ALK-positive lymphomas
cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood. 2007;110(5):1621-1630.
12. Gu TL, Tothova Z, Scheijen B, Griffin JD, Gilliland DG, Sternberg DW. NPM-ALK fusion kinase of anaplastic large-cell lym- phoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood. 2004;103(12):4622-4629.
13. Fernandez-Vidal A, Mazars A, Gautier EF, Prevost G, Payrastre B, Manenti S. Upregulation of the CDC25A phosphatase down-stream of the NPM/ALK oncogene participates to anaplastic large cell lym- phoma enhanced proliferation. Cell Cycle. 2009;8(9):1373-1379.
14. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011; 1812(5):592-601.
15. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009;60:167-179.
16. Hoareau-Aveilla C, Merkel O, Meggetto F. MicroRNA and ALK-positive anaplastic large cell lymphoma. Front Biosci (Schol Ed). 2015;7:217-225.
17. Hoareau-Aveilla C, Valentin T, Daugrois C, et al. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM- ALK(+) cell growth. J Clin Invest. 2015;125(9):3505-3518.
18. Merkel O, Robert G, Hamacher F, Grabner L, Greil R, Kenner L. Subtype specific expression of immnune-modulating miR- 155 and miR-146a in anaplastic large cell lymphoma. Cancer Res. 2009;72(8): supple- mental 1.
19. Dejean E, Renalier MH, Foisseau M, et al. Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lym- phoma kinase (ALK)-positive anaplastic large-cell lymphomas. Leukemia. 2011;25(12):1882-1890.
20. Desjobert C, Renalier MH, Bergalet J, et al. MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 over- expression. Blood. 2011;117(24):6627-6637.
21. Congras A, Caillet N, Torossian N, et al. Doxorubicin-induced loss of DNA topoiso- merase II and DNMT1- dependent sup- pression of MiR-125b induces chemoresis- tance in ALK-positive cells. Oncotarget. 2018;9(18):14539-14551.
22. He XX, Kuang SZ, Liao JZ, et al. The regu- lation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst. 2015;11(2):532-539.
23. Yang G, Xiong G, Cao Z, et al. miR-497 expression, function and clinical applica- tion in cancer. Oncotarget. 2016; 7(34):55900-55911.
24. Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107
group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol. 2010; 402(3):491-509.
25. Iorio MV, Casalini P, Tagliabue E, Menard S, Croce CM. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer. 2008;44(18):2753-2759.
26. Pikman Y, Alexe G, Roti G, et al. Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia. Clin Cancer Res. 2017;23(4):1012-1024.
27. Sawai CM, Freund J, Oh P, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell. 2012;22(4):452-465.
28. Lamant L, Espinos E, Duplantier M, et al. Establishment of a novel anaplastic large- cell lymphoma-cell line (COST) from a 'small-cell variant' of ALCL. Leukemia. 2004;18(10):1693-1698.
29. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.
30. Thompson MA, Stumph J, Henrickson SE, et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol. 2005;36(5):494-504.
31. Nagel S, Leich E, Quentmeier H, et al. Amplification at 7q22 targets cyclin-depen- dent kinase 6 in T-cell lymphoma. Leukemia. 2008;22(2):387-392.
32. Degenhardt T, Wuerstlein R, Eggersmann T, Harbeck N. The safety of palbociclib for the treatment of advanced breast cancer. Expert Opin Drug Saf. 2018;28:1-6.
33. He JF, Luo YM, Wan XH, Jiang D. Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 2011;25(6):404-408.
34. Steinhilber J, Bonin M, Walter M, Fend F, Bonzheim I, Quintanilla-Martinez L. Next- generation sequencing identifies deregula- tion of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL. PLoS One. 2015;10(2):e0117780.
35. Liu X, Chen X, Yu X, et al. Regulation of microRNAs by epigenetics and their inter- play involved in cancer. J Exp Clin Cancer Res. 2013;32:96.
36. Deng H, Guo Y, Song H, et al. MicroRNA- 195 and microRNA-378 mediate tumor growth suppression by epigenetical regula- tion in gastric cancer. Gene. 2013; 518(2):351-359.
37. Li W, Jin X, Deng X, Zhang G, Zhang B, Ma L. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E. Biochem Biophys Res Commun.
2014;449(2):235-240.
38. Luo Q, Li X, Gao Y, et al. MiRNA-497 reg-
ulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int. 2013;13(1):95.
39. Furuta M, Kozaki K, Tanimoto K, et al. The tumor-suppressive miR-497-195 cluster tar- gets multiple cell-cycle regulators in hepa- tocellular carcinoma. PLoS One. 2013; 8(3):e60155.
40. Zhang Y, Zhang Z, Li Z, et al. MicroRNA- 497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep. 2016;36(3):1293-1300.
41. Ozata DM, Caramuta S, Velazquez- Fernandez D, et al. The role of microRNA deregulation in the pathogenesis of adreno- cortical carcinoma. Endocr Relat Cancer. 2011;18(6):643-655.
42. Xu JW, Wang TX, You L, et al. Insulin-like growth factor 1 receptor (IGF-1R) as a tar- get of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One. 2014;9(3):e92847.
43. Shen L, Li J, Xu L, et al. miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 2012;3(3):475-480.
44. Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angio- genesis. Cancer Cell. 2013;24(2):167-181.
45. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-posi- tive. Crit Rev Oncol Hematol. 2012;83 (2):293-302.
46. Agirre X, Vilas-Zornoza A, Jimenez- Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR- 124a regulates CDK6 expression and con- fers a poor prognosis in acute lymphoblas- tic leukemia. Cancer Res. 2009;69(10): 4443-4453.
47. Oliveira LH, Schiavinato JL, Fraguas MS, et al. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci. 2015;106(10):1264-1277.
48. Hu MG, Deshpande A, Enos M, et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigen- esis. Cancer Res. 2009;69(3):810-818.
49. Baughn LB, Di Liberto M, Wu K, et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 2006;66(15):7661-7667.
50. Bonvini P, Zorzi E, Mussolin L, et al. The effect of the cyclin-dependent kinase inhibitor flavopiridol on anaplastic large cell lymphoma cells and relationship with NPM-ALK kinase expression and activity. Haematologica. 2009;94(7):944-955.
haematologica | 2019; 104(2)
359


































































































   153   154   155   156   157