Page 100 - 2019_02-Haematologica-web
P. 100

L.W. Dillon et al. et al.
supported by the Medical Research Scholars Program, a public- private partnership supported jointly by the NIH, and by gener- ous contributions to the Foundation for the NIH by the Doris Duke Charitable Foundation (Grant #2014194). The authors thank Samuel J. Rulli and Melanie Hussong of Qiagen, Inc. for their insight and advice during the assay development. The authors also thank Yuesheng Li, Yan Luo, and Patrick Burr of
the NHLBI DNA Sequencing and Genomics Core for providing next-generation sequencing services and troubleshooting issues that arose during data collection. Finally, the authors also thank A. John Barrett of the National Heart, Lung and Blood Institute, Paul Liu of the NHLBI, and Gabriel Ghiaur of the Sidney Kimmel Cancer Center at Johns Hopkins for kindly providing patient samples or cell lines.
References
1. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482- 1490.
2. Araki D, Wood BL, Othus M, et al. Allogeneic hematopoietic cell transplanta- tion for acute myeloid leukemia: time to move toward a minimal residual disease- based definition of complete remission? J Clin Oncol. 2016;34(4):329-336.
3. Buckley SA, Wood BL, Othus M, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865-873.
4. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an
international expert panel. Blood. 2017;129(4):424-447.
5. Goswami M, McGowan KS, Lu K, et al. A multigene array for measurable residual dis- ease detection in AML patients undergoing SCT. Bone Marrow Transplant. 2015;50(5): 642-651.
6. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275-1291.
7. Zhou Y, Wood BL. Methods of detection of measurable residual disease in AML. Curr Hematol Malig Rep. 2017;12(6):557-567.
8. Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.
9. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regula- tors and persist in remission. Proc Natl Acad Sci USA. 2014;111(7):2548-2553.
10. Jan M, Snyder TM, Corces-Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med.
2012;4(149):149ra118.
11. Shlush LI, Zandi S, Mitchell A, et al.
Identification of pre-leukaemic haematopoi- etic stem cells in acute leukaemia. Nature. 2014;506(7488):328-333.
12. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
13. Jaiswal S, Fontanillas P, Flannick J, et al. Age- related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498.
14. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16.
15. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbour- ing AML-associated mutations is ubiqui- tous in healthy adults. Nat Commun. 2016;7: 12484.
16. Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quan- titative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe Against Cancer program. Leukemia. 2003;17(12): 2474-2486.
17. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual dis- ease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195-5201.
18. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control stud- ies of 'real-time' quantitative reverse tran- scriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia. 2003;17(12): 2318-2357.
19. Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016; 374(5):422-433.
20. Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic
landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059- 2074.
21. Gaksch L, Kashofer K, Heitzer E, et al. Residual disease detection using targeted parallel sequencing predicts relapse in cyto- genetically normal acute myeloid leukemia. Am J Hematol. 2018;93(1):23-30.
22. Klco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314 (8):811-822.
23. Levis MJ, Perl AE, Altman JK, et al. A next- generation sequencing-based assay for min- imal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018;2(8):825-831.
24. Malmberg EB, Stahlman S, Rehammar A, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur J Haematol. 2017;98(1):26-37.
25. Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic mutations at remis- sion and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018;36(18):1788- 1797.
26. Roloff GW, Lai C, Hourigan CS, Dillon LW. Technical advances in the measurement of residual disease in acute myeloid leukemia. J Clin Med. 2017;6(9).
27. Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32(7):1598-1608.
28. Aloisio M, Licastro D, Caenazzo L, et al. A technical application of quantitative next generation sequencing for chimerism evalu- ation. Mol Med Rep. 2016;14(4):2967-2974.
29. Bornhauser M, Oelschlaegel U, Platzbecker U, et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica. 2009;94(11):1613-1617.
30. Ahci M, Toffalori C, Bouwmans E, et al. A new tool for rapid and reliable diagnosis of HLA loss relapses after HSCT. Blood. 2017;130(10):1270-1273.
304
haematologica | 2019; 104(2)


































































































   98   99   100   101   102