Page 184 - 2018_12-Haematologica-web
P. 184

P.L.R. Nicolson et al. References
1. Li Z, Delaney MK, O'Brien KA, Du X. Signalling during platelet adhesion and acti- vation. Arterioscler. Thromb Vasc Biol. 2010;30(12):2341–2349.
2. Alshehri OM, Hughes CE, Montague S, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126(13):1601– 1608.
3. Nieswandt B. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102 (2):449–461.
4. Mammadova-Bach E, Ollivier V, Loyau S, et al. Platelet glycoprotein VI binds to polymer- ized fibrin and promotes thrombin genera- tion. Blood. 2015;126(5):683–691.
5. Watson SP, Herbert JMJ, Pollitt AY. GPVI and CLEC-2 in hemostasis and vascular integri- ty. J Thromb Haemost. 2010;8(7):1456– 1467.
6. Jandrot-Perrus M, Busfield S, Lagrue AH, et al. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood. 2000;96(1):1798–1807.
7. Bender M, Hagedorn I, Nieswandt B. Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl3-induced thrombo- sis. J Thromb Haemost. 2011;9(7):1423– 1426.
8. Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet func- tion. Br J Haematol. 2013;165(2):165–178.
9. Shatzel JJ, Olson SR, Tao DL, et al. Ibrutinib- associated bleeding: pathogenesis, manage- ment, and risk reduction strategies. J Thromb Haemost. 2015;38(1):42–49.
10. Caron F, Leong DP, Hillis C, Fraser G, Siegal D. Current understanding of bleeding with ibrutinib use: a systematic review and meta- analysis. Blood Adv. 2017;1(12):772–778.
11. Levade M, David E, Garcia C, Laurent P, Payrastre B. Ibrutinib treatment affects colla- gen and von Willebrand factor-dependent platelet functions. Blood. 2014;124(26): 3991–3995.
12. Kamel S, Horton L, Ysebaert L, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia. 2015;29(4):783–787.
13. Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib inhibits platelet integrin αIIbβ3 outside-in signalling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol. 2015;35(11):2326-2335.
14. Kazianka L, Drucker C, Skrabs C, et al. Ristocetin-induced platelet aggregation for monitoring of bleeding tendency in CLL treated with ibrutinib. Leukemia. 2017;31(5):1117–1122.
15. Quek LS, Bolen J, Watson SP. A role for Bruton’s tyrosine kinase (Btk) in platelet acti- vation by collagen. Curr Biol. 1998;8(20): 1137-1140.
16. Atkinson BT, Ellmeier W, Watson SP. Tec regulates platelet activation by GPVI in the absence of Btk. Blood. 2003;102(10):3592– 3599.
17. Byrd JC, Harrington B, O'Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–332.
2596: ACP-196: a novel covalent Bruton's tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target cov- erage in chronic lymphocytic Leukemia (CLL) patients. Cancer Res. 2015;75(15 Suppl):2596–2596.
31. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2012;31(1):88–
18. Honigberg L, Smith AM, Sirisawad M, et al.
The Bruton tyrosine kinase inhibitor PCI-
32765 blocks B-cell activation and is effica-
cious in models of autoimmune disease and 94.
B-cell malignancy. Proc Natl Acad Sci USA.
2010;107(29):13075–13080.
19. Rushworth SA, MacEwan DJ, Bowles KM.
Ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(13): 1277–1279.
20. Watanabe D, Hashimoto S, Ishiai M, et al. Four tyrosine residues in phospholipase C- gamma 2, identified as Btk-dependent phos- phorylation sites, are required for B cell anti- gen receptor-coupled calcium signalling. J Biol Chem. 2001;276(42):38595–38601.
21. Wahl MI, Fluckiger AC, Kato RM, et al. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyro- sine kinase via alternative receptors. Proc Natl Acad Sci USA. 1997;94(21):11526– 11533.
22. Tomlinson MG, Kurosaki T, Berson AE, Fujii GH, Bolen JB. Reconstitution of Btk sig- nalling by the atypical tec family tyrosine kinases Bmx and Txk. J Biol Chem. 1999;274(19):13577–13585.
23. Takata M, Homma Y, Kurosaki T. Requirement of phospholipase C-g2 activa- tion in surface immunoglobulin M-induced B cell apoptosis. J Exp Med. 1995;182(4): 907–914.
24. Tomlinson MG, Woods DB, McMahon M, et al. A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signalling pathways via PLC gamma 2 in B cells. BMC Immunol. 2001;2(4):1–12.
25. Wu J, Zhang M, Liu D. Acalabrutinib (ACP- 196): a selective second- generation BTK inhibitor. J Hematol Oncol. 2016;9(1):1–4.
26. Salto K, Tolias KF, Abdelhafid S, et al. Btk regulates PtdIns-4,5-P2 synthesis: impor- tance for calcium signalling and PI3K activi- ty. Immunity. 2003;19:669–678.
27. Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG. Mechanism of B-cell receptor-induced phos- phorylation and activation of phospholipase C-g2. Mol Cell Biol. 2004;24(22):9986–9999.
28. Burkhart JM, Vaudel M, Gambaryan S, et al. The first comprehensive and quantitative analysis of human platelet protein composi- tion allows the comparative analysis of structural and functional pathways. Blood. 2012;120(15):e73–e82.
29. Bye AP, Unsworth AJ, Desborough MJ, et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv. 2017;1(26):2610–2623.
30. Covey T, Barf T, Gulrajani M, et al. Abstract
32. Banerjee R, Timlin C, Fitzpatrick D, et al. Comparable outcomes in chronic lympho- cytic leukeemia patients treated with reduced dose ibrutinib: results from a multi- center study. Haematologica. 2016;101(s1): 56-57.
33. Bose P, Gandhi VV, Keating MJ. Pharmacokinetic and pharmacodynamic evaluation of ibrutinib for the treatment of chronic lymphocytic leukeemia: rationale for lower doses. Expert Opin Drug Metab Toxicol. 2016;11:1–12.
34. Dreyling, M, Jurczak W, Silva RS, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lym- phoma: an international, randomised, open- label, phase 3 study. Lancet. 2016;387 (10020):770-779.
35. Rule, S, Dreyling, M, Goy, A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib: a pooled analysis from three open-label studies. Br J Haematol. 2017;179(3):430-438.
36. Wang, ML, Rule S, Martin, P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Eng J Med. 2013;369(6):507-516.
37. Lordkipanidzé M, Lowe GC, Kirkby NS, et al. Characterization of multiple platelet acti- vation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay. Blood. 2014;123 (8):e11-e22.
38. Chan, MV, Leadbeater, PD, Watson, SP, Warner TD. Not all light transmission aggre- gation assays are created equal: qualitative differences between light tramsission and 96-well plate aggregometry. Platelets. 2018 May 1:1-4. [Epub ahead of print]
39. Hughes CE, Pollitt AY, Mori J, et al. CLEC-2 activates Syk through dimerization. Blood. 2010;115(14):2947–2955.
40. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fuorescence properties. J Biol Chem. 2001;260(6):3440–3450.
41. Takata M, Kurosaki T. A role for Bruton's tyrosine kinase in B cell antigen receptor- mediated activation of phospholipase C-g2. J Exp Med. 1996;184(1):31–40.
42. Hughes CE, Sinha U, Pandey A, et al. Critical role for an acidic amino acid region in platelet signalling by the HemITAM (Hemi-immunoreceptor Tyrosine-based Activation Motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem. 2013;288(7):5127–5135.
2108
haematologica | 2018; 103(12)


































































































   182   183   184   185   186