Page 144 - 2018_12-Haematologica-web
P. 144

S. Kinoshita et al.
Pharmacological perturbation of CDK9
using selective CDK9 inhibition or degrada-
tion. Nat Chem Biol. 2018;14(2):163-170.
13. Huang CH, Lujambio A, Zuber J, et al. CDK9-mediated transcription elongation is required for MYC addiction in hepatocellu- lar carcinoma. Genes Dev. 2014;28(16):1800-
1814.
14. Gregory GP, Hogg SJ, Kats LM, et al. CDK9
inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. Leukemia. 2015;29(6):1437-1441.
15. Baker A, Gregory GP, Verbrugge I, et al. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclini- cal models of MLL-rearranged acute myeloid leukemia. Cancer Res. 2016;76(5):1158-1169.
16. Tong Z, Chatterjee D, Deng D, et al. Antitumor effects of cyclin dependent kinase 9 inhibition in esophageal adenocar- cinoma. Oncotarget. 2017;8(17):28696- 28710.
17. Narita T, Ishida T, Ito A, et al. Cyclin-depen- dent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood. 2017; 130(9):1114-1124.
18. Bark-Jones SJ, Webb HM, West MJ. EBV EBNA 2 stimulates CDK9-dependent tran- scription and RNA polymerase II phospho- rylation on serine 5. Oncogene. 2006; 25(12):1775-1785.
19. Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog. 2011;7(10):e1002334.
20. Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. Inside Cell. 2016;1(2):106-116.
21. Lucking U, Scholz A, Lienau P, et al. Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem. 2017; 12(21):1776- 1793.
22. Zhang Y, Nagata H, Ikeuchi T, et al. Common cytological and cytogenetic fea- tures of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lym- phomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br J Haematol. 2003;121(5):805-814.
23. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK- 92) with phenotypical and functional char- acteristics of activated natural killer cells. Leukemia. 1994;8(4):652-8.
24. Emi N, Abe A, Kasai M, et al. CD4- and CD56-positive T-cell line, MTA, established from natural killer-like T-cell leukemia/lym- phoma. Int J Hematol. 1999;69(3):180-185.
25. Tsuge I, Morishima T, Morita M, Kimura H, Kuzushima K, Matsuoka H.
Characterization of Epstein-Barr virus (EBV)-infected natural killer (NK) cell pro- liferation in patients with severe mosquito allergy; establishment of an IL-2-depen- dent NK-like cell line. Clin Exp Immunol. 1999;115(3):385-392.
26. Yagita M, Huang CL, Umehara H, et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia. 2000;14(5):922-930.
27. Ishida T, Iida S, Akatsuka Y, et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-Cell leukemia/lymphoma. Clin Cancer Res. 2004;10(22):7529-7539.
28. Ri M, Iida S, Ishida T, et al. Bortezomib- induced apoptosis in mature T-cell lym- phoma cells partially depends on upregula- tion of Noxa and functional repression of Mcl-1. Cancer Sci. 2009;100(2):341-348.
29. Ishida T, Utsunomiya A, Iida S, et al. Clinical significance of CCR4 expression in adult T- cell leukemia/lymphoma: its close associa- tion with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9(10):3625- 3634.
30. Zhang Y, Zhou L, Leng Y, Dai Y, Orlowski RZ, Grant S. Positive transcription elonga- tion factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget. 2017;8(35):59476-59491.
31. Bellan C, De Falco G, Lazzi S, et al. CDK9/CYCLIN T1 expression during nor- mal lymphoid differentiation and malignant transformation. J Pathol. 2004;203(4):946- 952.
32. Wong RWJ, Ishida T, Sanda T. Targeting general transcriptional machinery as a thera- peutic strategy for adult T-cell leukemia molecules. 2018;23(5).
33. Hnisz D, Abraham BJ, Lee TI, et al. Super- enhancers in the control of cell identity and disease. Cell. 2013;155(4):934-947.
34. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067-1073.
35. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeu- tic strategy to target c-Myc. Cell. 2011;146(6):904-917.
36. Roderick JE, Tesell J, Shultz LD, et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123(7):1040-1050.
37. Wong RWJ, Ngoc PCT, Leong WZ, et al. Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood. 2017; 130(21):2326- 2338.
38. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A phase separa- tion model for transcriptional control. Cell. 2017;169(1):13-23.
39. Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511(7511):616-620.
40. Walsby E, Pratt G, Shao H, et al. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget. 2014;5(2):375-385.
41. Mori F, Ishida T, Ito A, et al. Potent antitu- mor effects of bevacizumab in a microenvi- ronment-dependent human lymphoma mouse model. Blood Cancer J. 2012; 2(4):e67.
42. Ito A, Ishida T, Utsunomiya A, et al. Defucosylated anti-CCR4 monoclonal anti- body exerts potent ADCC against primary ATLL cells mediated by autologous human immune cells in NOD/Shi-scid, IL-2R gamma(null) mice in vivo. J Immunol. 2009; 183(7):4782-4791.
43. Kar JE, Garrett-Mayer E, Estey EH, et al. Randomized phase II study of two sched- ules of flavopiridol given as timed sequential therapy with cytosine arabinoside and mitoxantrone for adults with newly diag- nosed, poor-risk acute myelogenous leukemia. Haematologica. 2012; 97(11):1736-1742.
44. Nemunaitis JJ, Small KA, Kirschmeier P, et al. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med. 2013;11:259.
45. Le Tourneau C, Faivre S, Laurence V, et al. Phase I evaluation of seliciclib (R-roscovi- tine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malig- nancies. Eur J Cancer 2010;46(18):3243- 3250.
46. Tong WG, Chen R, Plunkett W, et al. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lympho- cytic leukemia and multiple myeloma. J Clin Oncol. 2010;28(18):3015-3022.
47. van der Biessen DA, Burger H, de Bruijn P, et al. Phase I study of RGB-286638, a novel, multitargeted cyclin-dependent kinase inhibitor in patients with solid tumors. Clin Cancer Res. 2014;20(18):4776-4783.
48. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of tar- geting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015; 14(2):130-146.
49. Kwong YL, Chan TSY, D, et al. PD1 block- ade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lym- phoma failing l-asparaginase. Blood. 2017;129(17):2437-2442.
50. Li X, Cheng Y, Zhang M, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018;11(1):15.
2068
haematologica | 2018; 103(12)


































































































   142   143   144   145   146