Page 133 - 2018_12-Haematologica-web
P. 133

BET inhibition modulates miRNAs in DLBCL
BRD4 with genes whose products regulate miRNA expres- sion, or through the direct inhibition of BRD4 at miRNA regulatory regions, or, as recently suggested, by interfering with the processing of pri-miRNA to pre-miRNAs.50 Unlike coding transcripts, miRNAs are highly stable in blood and as such, levels of circulating miRNAs have been used for diagnosis and screening in a number of diseases. In lym- phomas, the overexpression of specific miRNAs in plasma and serum samples has been shown to be an accurate bio- marker for diagnosis, prognosis and response to therapy.45
The circulating miRNAs that have been identified as bio- markers in lymphoma are among those that we have iden- tified as regulated by BET inhibition (miR-92, miR-21, miR-155). The assessment of circulating miRNAs could, therefore, be used as a robust and non-invasive way to monitor response to BET inhibitor treatment.
In conclusion, our observations contribute to a better understanding of the targeted effects of BET inhibitors, revealing a novel aspect of the activity of this class of compounds in lymphomas.
References
1. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524- 15529.
2. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635-647.
3. Ambs S, Prueitt RL, Yi M, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2008;68(15): 6162-6170.
4. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189-198.
5. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR- 181. Cancer Res. 2006;66(24):11590-11593.
6. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207 (2):243-249.
7. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828-833.
8. Hezaveh K, Kloetgen A, Bernhart SH, et al. Alterations of microRNA and microRNA- regulated messenger RNA expression in ger- minal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica. 2016;101(11):1380-1389.
9. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscrip- tional gene silencing. Cell. 2005;123(4):631- 640.
10. Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate nega- tive post-transcriptional regulation. Nat Genet. 2002;30(4):363-364.
11. Bracken CP, Scott HS, Goodall GJ. A net- work-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016;17(12):719-732.
12. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lym- phoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443-459.
13. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298-303.
14. Pasqualucci L, Dominguez-Sola D,
Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lym- phoma. Nature. 2011;471(7337):189-195.
15. Boi M, Gaudio E, Bonetti P, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res. 2015;21(7):1628- 1638.
16. Filippakopoulos P, Knapp S. Targeting bro- modomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13 (5):337-356.
17. Stathis A, Bertoni F. BET Proteins as targets for anticancer treatment. Cancer Discov. 2018;8(1):24-36.
18. Stathis A, Zucca E, Bekradda M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016;6(5):492-500.
19. Amorim S, Stathis A, Gleeson M, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myelo- ma: a dose-escalation, open-label, pharma- cokinetic, phase 1 study. Lancet Haematol. 2016;3(4):e196-204.
20. Berthon C, Raffoux E, Thomas X, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-esca- lation, phase 1 study. Lancet Haematol. 2016;3(4):e186-195.
21. Henssen A, Althoff K, Odersky A, et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin Cancer Res. 2016;22(10):2470-2481.
22. Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super- enhancer-associated dependencies in dif- fuse large B cell lymphoma. Cancer Cell. 2013;24(6):777-790.
23. Ceribelli M, Kelly PN, Shaffer AL, et al. Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors. Proc Natl Acad Sci USA. 2014;111(31):11365-11370.
24. Riveiro ME, Astorgues-Xerri L, Vazquez R, et al. OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non- small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget. 2016;7(51):84675-84687.
25. Vazquez R, Riveiro ME, Astorgues-Xerri L, et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as sin- gle agent and in combination with everolimus. Oncotarget. 2017;8(5):7598- 7613.
26. Noel JK, Iwata K, Ooike S, Sugahara K, Nakamura H, Daibata M. Development of
the BET bromodomain inhibitor OTX015.
Mol Cancer Ther. 2013;12(11 Suppl): C244. 27. Chila R, Basana A, Lupi M, et al. Combined inhibition of Chk1 and Wee1 as a new ther- apeutic strategy for mantle cell lymphoma.
Oncotarget. 2015;6(5):3394-3408.
28. Tarantelli C, Gaudio E, Arribas AJ, et al. PQR309 is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in com- bination therapy. Clin Cancer Res.
2018;24(1):120-129.
29. Valeri N, Braconi C, Gasparini P, et al.
MicroRNA-135b promotes cancer progres- sion by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25(4):469-483.
30. Dal Bo M, D'Agaro T, Gobessi S, et al. The SIRT1/TP53 axis is activated upon B-cell receptor triggering via miR-132 up-regula- tion in chronic lymphocytic leukemia cells. Oncotarget. 2015;6(22):19102-19117.
31. Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007 [cited; Available from: http://bioin- fogp.cnb.csic.es/tools/venny/index.html.
32. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-15550.
33. Lizio M, Harshbarger J, Shimoji H, et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015;16:22.
34. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68-73.
35. Dal Bo M, Bomben R, Hernandez L, Gattei V. The MYC/miR-17-92 axis in lymphopro- liferative disorders: a common pathway with therapeutic potential. Oncotarget. 2015;6(23):19381-19392.
36. Diaz-Martinez M, Benito-Jardon L, Alonso L, Koetz-Ploch L, Hernando E, Teixido J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018;78(4):1017-1030.
37. Culpin RE, Proctor SJ, Angus B, Crosier S, Anderson JJ, Mainou-Fowler T. A 9 series microRNA signature differentiates between germinal centre and activated B-cell-like dif- fuse large B-cell lymphoma cell lines. Int J Oncol. 2010;37(2):367-376.
38. Vishwamitra D, Li Y, Wilson D, et al. MicroRNA 96 is a post-transcriptional sup- pressor of anaplastic lymphoma kinase expression. Am J Pathol. 2012;180(5):1772- 1780.
39. Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S. Low levels of miR-92b/96
haematologica | 2018; 103(12)
2057


































































































   131   132   133   134   135