Page 49 - 2018_10-Haematologica-web
P. 49

Steady-state blood CD34+ HSCs are CXCR4lowCD133+
45. Ratajczak MZ. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia. 2015;29(4):776- 782.
46. Ratajczak MZ, Adamiak M. Membrane lipid rafts, master regulators of hematopoi- etic stem cell retention in bone marrow and their trafficking. Leukemia. 2015;29(7): 1452-1457.
47. De Bruyne E, Andersen TL, De Raeve H, et al. Endothelial cell-driven regulation of CD9 or motility-related protein-1 expres- sion in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia. 2006;20(10):1870-1879.
48. Brendel C, Neubauer A. Characteristics and analysis of normal and leukemic stem cells: current concepts and future directions. Leukemia. 2000;14(10):1711-1717.
49. Radtke S, Gorgens A, Kordelas L, et al. CD133 allows elaborated discrimination and quantification of haematopoietic pro- genitor subsets in human haematopoietic stem cell transplants. Br J Haematol. 2015;169(6):868-878.
50. Gorgens A, Radtke S, Mollmann M, et al. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 2013;3 (5):1539-1552.
51. Takahashi M, Matsuoka Y, Sumide K, et al. CD133 is a positive marker for a distinct class of primitive human cord blood- derived CD34-negative hematopoietic stem cells. Leukemia. 2014;28(6):1308- 1315.
52. Giebel B, Corbeil D, Beckmann J, et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood. 2004;104(8):2332-2338.
53. Bornhauser M, Eger L, Oelschlaegel U, et al. Rapid reconstitution of dendritic cells after allogeneic transplantation of CD133+ selected hematopoietic stem cells. Leukemia. 2005;19(1):161-165.
54. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208(3):421-428.
55. Lucas D, Battista M, Shi PA, Isola L, Frenette PS. Mobilized hematopoietic stem cell yield depends on species-specific circa- dian timing. Cell Stem Cell. 2008;3(4):364- 366.
56. Jobin C, Cloutier M, Simard C, Neron S. Heterogeneity of in vitro-cultured CD34+ cells isolated from peripheral blood. Cytotherapy. 2015;17(10):1472-1484.
57. Pang WW, Price EA, Sahoo D, et al. Human
bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA. 2011;108(50):20012-20017.
58. Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood. 2008;111(12):5553-5561.
59. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109(1):39-45.
60. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med. 2003;9(11):1428-1432.
61. Lee J, Shieh JH, Zhang J, et al. Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4. Blood. 2013;121 (20):4082-4089.
62. Codispoti B, Rinaldo N, Chiarella E, et al. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoi- etic stem cells. Oncotarget. 2017;8(27): 43782-43798.
haematologica | 2018; 103(10)
1615


































































































   47   48   49   50   51