Page 163 - 2018_10-Haematologica-web
P. 163

CD16+NK-92 and anti-CD123 antibody therapy for AML
References
1. Hurwitz CA, Mounce KG, Grier HE. Treatment of patients with acute myeloge- nous leukemia: review of clinical trials of the past decade. J Pediatr Hematol Oncol. 1995;17(3):185-197.
2. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341(14):1051-1062.
3. Ribeiro RC, Razzouk BI, Pounds S, Hijiya N, Pui CH, Rubnitz JE. Successive clinical trials for childhood acute myeloid leukemia at St Jude Children's Research Hospital, from 1980 to 2000. Leukemia. 2005; 19(12):2125-2129.
4. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645-648.
5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
6. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myeloge- nous leukemia stem cells. Leukemia. 2000; 14(10):1777-1784.
7. Vergez F, Green AS, Tamburini J, et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest- Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96(12):1792-1798.
8. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051-3057.
9. Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical nat- ural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955-959.
10. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK- 92) with phenotypical and functional char- acteristics of activated natural killer cells. Leukemia. 1994;8(4):652.
11. Yan Y, Steinherz P, Klingemann HG, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res. 1998;4(11):2859-2868.
12. Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625-632.
13. Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced can- cer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563-1570.
14. Williams BA, Law AD, Routy B, et al. A
phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplanta- tion shows safety and evidence of efficacy. Oncotarget. 2017;8(51):89256-89268.
15. Klingemann H, Wong E, Maki G. A cyto- toxic NK-cell line (NK-92) for ex vivo purg- ing of leukemia from blood. Bone Marrow Transplant. 1996;2(2):68-75.
16. Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res. 2001;10(4):535-544.
17. Tam YK, Miyagawa B, Ho VC, Klingemann HG. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother. 1999;8(3):281-290.
18. Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS, Weiner LM. Blocking NK cell inhibitory self-recognition pro- motes antibody-dependent cellular cyto- toxicity in a model of anti-lymphoma ther- apy. J Immunol. 2008;180(9):6392-6401.
19. Williams BA, Wang XH, Keating A. Clonogenic assays measure leukemia stem cell killing not detectable by chromium release and flow cytometric cytotoxicity assays. Cytotherapy. 2010;12(7):951-960.
20. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097- 2100.
21. Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initi- ating cells. Blood. 2008;112(3):568-575.
22. Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19(1):138-152.
23. Costello RT, Mallet F, Gaugler B, et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immuno- genicity, and impaired dendritic cell trans- formation capacities. Cancer Res. 2000; 60(16):4403-4411.
24. Langenkamp U, Siegler U, Jorger S, et al. Human acute myeloid leukemia CD34+CD38- stem cells are susceptible to allorecognition and lysis by single KIR- expressing natural killer cells. Haematologica. 2009;94(11):1590-1594.
25. Swift BE, Williams BA, Kosaka Y, et al. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a biolu- minescent xenograft mouse model. Haematologica. 2012;97(7):1020-1028.
26. Skrtic M, Sriskanthadevan S, Jhas B, et al. Inhibition of mitochondrial translation as a
therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011; 20(5):674-688.
27. Kipps TJ, Parham P, Punt J, Herzenberg LA. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclon- al antibodies. J Exp Med. 1985;161(1):1-17.
28. Biddle WC, Pancook J, Goldrosen M, Han T, Foon KA, Vaickus L. Antibody-depen- dent, cell-mediated cytotoxicity by an anti- class II murine monoclonal antibody: effects of recombinant interleukin 2 on human effector cell lysis of human B-cell tumors. Cancer Res. 1990;50(10):2991- 2996.
29. Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, elimi- nates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5(1):31-42.
30. Leyton JV, Hu M, Gao C, et al. Auger elec- tron radioimmunotherapeutic agent specif- ic for the CD123+/CD131- phenotype of the leukemia stem cell population. J Nucl Med. 2011;52(9):1465-1473.
31. Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28(11):2213-2221.
32. Xie LH, Biondo M, Busfield SJ, et al. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J. 2017;7(6):e567.
33. Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122(18):3138-3148.
34. Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014; 123(15):2343-2354.
35. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28(8):1596-1605.
36. Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric anti- gen receptor. Br J Haematol. 2013; 161(3):389-401.
37. He SZ, Busfield S, Ritchie DS, et al. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma. 2015; 56(5):1406-1415.
haematologica | 2018; 103(10)
1729


































































































   161   162   163   164   165