Page 61 - Haematologica August 2018
P. 61

Activity of SL-401 in AML and MDS
8. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198-6208.
9. Vasu S, He S, Cheney C, et al. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood. 2016;127(23): 2879-2889.
10. Sato N, Caux C, Kitamura T, et al. Expression and factor-dependent modula- tion of the interleukin-3 receptor subunits on human hematopoietic cells. Blood. 1993;82(3):752-761.
11. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myeloge- nous leukemia stem cells. Leukemia. 2000; 14(10):1777-1784.
12. Munoz L, Nomdedeu JF, Lopez O, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignan- cies. Haematologica. 2001;86(12):1261-1269.
13. Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28(11):2213-2221.
14. Du X, Ho M, Pastan I. New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. J Immunother. 2007;30(6):607-613.
15. Stein C, Kellner C, Kugler M, et al. Novel conjugates of single-chain Fv antibody frag- ments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol. 2010; 148(6):879-889.
16. Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014; 123(15):2343-2354.
17. Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122(18):3138-3148.
18. Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affin- ity retargeting platform. Blood. 2016;127(1):122-131.
19. Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphtheria toxin- interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodyspla- sia. Leuk Lymphoma. 2008;49(3):543-553.
20. Frankel AE, Woo JH, Ahn C, et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacy- toid dendritic cell neoplasm patients. Blood. 2014;124(3):385-392.
21. Macanas-Pirard P, Leisewitz A, Broekhuizen R, et al. Bone marrow stromal cells modulate mouse ENT1 activity and
protect leukemia cells from cytarabine induced apoptosis. PLoS One. 2012;7(5): e37203.
22. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic pro- teins. Leukemia. 2002;16(9):1713-1724.
23. Binato R, de Almeida Oliveira NC, Du Rocher B, Abdelhay E. The molecular sig- nature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process. Cancer Lett. 2015; 369(1):134-143.
24. Huang JC, Basu SK, Zhao X, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5:e302.
25. Garrido SM, Appelbaum FR, Willman CL, Banker DE. Acute myeloid leukemia cells are protected from spontaneous and drug- induced apoptosis by direct contact with a human bone marrow stromal cell line (HS- 5). Exp Hematol. 2001;29(4):448-457.
26. Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodys- plastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 2011;118(20):5583-5592.
27. Mani R, Mao Y, Frissora FW, et al. Tumor antigen ROR1 targeted drug delivery medi- ated selective leukemic but not normal B- cell cytotoxicity in chronic lymphocytic leukemia. Leukemia. 2015;29(2):346-355.
28. Ehninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4:e218.
29. Alexander RL, Kucera GL, Klein B, Frankel AE. In vitro interleukin-3 binding to leukemia cells predicts cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Bioconjug Chem. 2000;11(4):564-568.
30. Feuring-Buske M, Frankel AE, Alexander RL, Gerhard B, Hogge DE. A diphtheria toxin-interleukin 3 fusion protein is cyto- toxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res. 2002;62(6):1730-1736.
31. Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE. Diphtheria toxin-interleukin-3 fusion pro- tein (DT(388)IL3) prolongs disease-free sur- vival of leukemic immunocompromised mice. Leukemia. 2003;17(1):155-159.
32. Testa U, Riccioni R, Biffoni M, et al. Diphtheria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 recep- tor expression. Blood. 2005;106(7): 2527- 2529.
33. Hogge DE, Yalcintepe L, Wong SH, Gerhard B, Frankel AE. Variant diphtheria
toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clinical Cancer Res. 2006;12(4):1284-1291.
34. Yalcintepe L, Frankel AE, Hogge DE. Expression of interleukin-3 receptor sub- units on defined subpopulations of acute myeloid leukemia blasts predicts the cyto- toxicity of diphtheria toxin interleukin-3 fusion protein against malignant progeni- tors that engraft in immunodeficient mice. Blood. 2006;108(10):3530-3537.
35. Hassanein NM, Alcancia F, Perkinson KR, Buckley PJ, Lagoo AS. Distinct expression patterns of CD123 and CD34 on normal bone marrow B-cell precursors ("hemato- gones") and B lymphoblastic leukemia blasts. Am J Clin Pathol. 2009;132(4):573-580.
36. Hwang K, Park CJ, Jang S, et al. Flow cyto- metric quantification and immunopheno- typing of leukemic stem cells in acute myeloid leukemia. Ann Hematol. 2012;91(10):1541-1546.
37. Ho TC, LaMere M, Stevens BM, et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and pro- gression. Blood. 2016;128(13):1671-1678.
38. Riccioni R, Pelosi E, Riti V, Castelli G, Lo- Coco F, Testa U. Immunophenotypic fea- tures of acute myeloid leukaemia patients exhibiting high FLT3 expression not associ- ated with mutations. Br J Haematol. 2011; 153(1):33-42.
39. Warlick ED, Cioc A, Defor T, Dolan M, Weisdorf D. Allogeneic stem cell transplan- tation for adults with myelodysplastic syn- dromes: importance of pretransplant dis- ease burden. Biol Blood Marrow Transplant. 2009;15(1):30-38.
40. Antonelli A, Noort WA, Jaques J, et al. Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches. Blood. 2016;128(25):2949-2959.
41. Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xeno- transplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016; 22(7):812-821.
42. Abarrategi A, Foster K, Hamilton A, et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. The Journal of clinical investigation. 2017;127(2):543-548.
43. Wang K, Sanchez-Martin M, Wang X, et al. Patient-derived xenotransplants can reca- pitulate the genetic driver landscape of acute leukemias. Leukemia. 2017; 31(1):151-158.
44. Frankel AE, Hall PD, McLain C, Safa AR, Tagge EP, Kreitman RJ. Cell-specific modu- lation of drug resistance in acute myeloid leukemic blasts by diphtheria fusion toxin, DT388-GMCSF. Bioconjugate chemistry. 1998;9(4):490-496.
haematologica | 2018; 103(8)
1297


































































































   59   60   61   62   63