Page 19 - Haematologica August 2018
P. 19

Editorials
into the pathogenesis of MALT lymphomas by linking, once again, immune receptor signaling activation and genetic abnormalities.
Acknowledgments
Supported by grants from ISCIII-FIS (PI16/00581), International Waldestrom Macroglobulinemia Foundation / Leukemia Lymphoma Society (MacroNext2017), and Worldwide Cancer Research (WCR15-1322).
References
1 Isaacson PG, Du MQ. MALT lymphoma: from morphology to mol- ecules. Nat Rev Cancer. 2004;4(8):644-653.
2. Thieblemont C, Bertoni F, Copie-Bergman C, Ferreri AJ, Ponzoni M. Chronic inflammation and extra-nodal marginal-zone lymphomas of MALT-type. Semin Cancer Biol. 2014;24:33-42.
3. ZuccaE,BertoniF.ThespectrumofMALTlymphomaatdifferentsites: biological and therapeutic relevance. Blood. 2016;127(17):2082-2092.
4. Teixeira Mendes LS, Wotherspoon A. Marginal zone lymphoma: Associated autoimmunity and auto-immune disorders. Best Pract Res Clin Haematol. 2017;30(1-2):65-76.
5. Bertoni F, Rossi D, Zucca E. Recent advances in understanding the biology of marginal zone lymphoma. F1000Res. 2018;7:406.
6. Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93(11):3601-3609.
7. Sanchez-Izquierdo D, Buchonnet G, Siebert R, et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood. 2003;101(11):4539-4546.
8. Hailfinger S, Lenz G, Ngo V, et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2009;106(47):19946-19951.
13. AudetM,BouvierM.RestructuringG-protein-coupledreceptoracti- vation. Cell. 2012;151(1):14-23.
14. Bar-Shavit R, Maoz M, Kancharla A, et al. G Protein-Coupled Receptors in Cancer. Int J Mol Sci. 2016;17(8).
15. NugentA,ProiaRL.TheroleofGprotein-coupledreceptorsinlym- phoid malignancies. Cell Signal. 2017;39:95-107.
16. Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal. 2018;41:65-74.
17. Ansell SM, Akasaka T, McPhail E, et al. t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood. 2012;120(19):3949-3957.
18. Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-cou- pled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther. 2018 Apr 22. [Epub ahead of print]
19. Williams IR. CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann N Y Acad Sci. 2006;1072:52-61.
20. Suan D, Kräutler NJ, Maag JLV, et al. CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light- Zone Location and Predominant Low Antigen Affinity. Immunity. 2017;47(6):1142-1153.e4.
21. Julian B, Gao K, Harwood BN, Beinborn M, Kopin AS. Mutation- Induced Functional Alterations of CCR6. J Pharmacol Exp Ther. 2017;360(1):106-116.
22. Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resist- ance in lymphoplasmacytic lymphoma. Blood. 2014;123(26):4120- 4131.
23. Nakagawa M, Schmitz R, Xiao W, et al. Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med. 2014;211(13):2497-2505.
24. Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119(24):5722-5730.
25. Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Leukemia. 2015;29(1):169-176.
26. Robles EF, Mena-Varas M, Barrio L, et al. Homeobox NKX2-3 pro- motes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. Nature Commun. 2016;7:11889.
27. Spina V, Khiabanian H, Messina M, et al. The genetics of nodal mar- ginal zone lymphoma. Blood. 2016;128(10):1362-1373.
9. Vicente-DueñasC,FontánL,Gonzalez-HerreroI,etal.Expressionof MALT1 oncogene in hematopoietic stem/progenitor cells recapitu- lates the pathogenesis of human lymphoma in mice. Proc Natl Acad Sci USA. 2012;109(26):10534-10539.
10. Du MQ. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin Cancer Biol. 2016;39:49-60.
28. Weston MD, Luijendijk MW, Humphrey KD, Möller C, Kimberling WJ. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet. 2004;74(2):357-366.
11. Moody S, Thompson JS, Chuang SS, et al. Novel GPR34 and CCR6 mutation and distinct genetic profiles in MALT lymphomas of differ- ent sites. Haematologica. 2018;103(8):1329-1336.
12. ZhouXE,HeY,deWaalPW,etal.IdentificationofPhosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell. 2017;170(3):457-469.e13.
29. Muppidi JR, Schmitz R, Green JA, et al. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature. 2014;516 (7530):254-258.
haematologica | 2018; 103(8)
1255


































































































   17   18   19   20   21