Page 165 - Haematologica August 2018
P. 165

Unconventional CD56dim/CD16neg NK cells in HSCT
plant. Indeed, the blocking of CD94/NKG2A with a mask- ing mAb significantly increased the CD107a degranula- tion as a marker of lytic activity of NK cells purified early after hHSCT. Although the mechanism(s) inducing the expansion of anergic NKG2Apos/uCD56dim NK cells is unknown, this acquired knowledge now makes it possible to develop a therapeutic approach targeting a specific immune check-point whose inhibition can efficiently increase NK cell alloreactivity within a given time-frame after hHSCT. In this regard, the efficacy of the in vivo administration of an anti-CD94/NKG2A blocking mAb (i.e., Monalizumab) in improving NK cell cytotoxicity against solid tumors and leukemic cells has been already reported both in mice and humans.44,45 (clinicaltrials.gov Identifier: 02459301) (Figure 8).
Acknowledgments
The authors thank the patients for their generosity and partic- ipation in this study and the nurses of the Hematology and Bone Marrow Transplant Unit (Humanitas Clinical and Research
Center). The present study is dedicated to the memory of Alessandro Moretta, a great mentor and a pillar in the field of NK cell biology.
Funding
This work was supported by Fondazione Cariplo (Grant per la Ricerca Biomedica 2012/0683 to EL and 2015/0603 to DM), Associazione Italiana per la Ricerca sul Cancro (MFAG 10607 to EL, IG.20312 to EM and IG 14687 to DM), by the Italian Ministry of Health (Bando Giovani Ricercatori GR-2011- 02347324 to EL and GR-2013-02356522 to AR), the intramu- ral program of the National Institutes of Allergy and Infectious Diseases (to MR) and intramural research and clinical funding programs of Humanitas Research Hospital (to DM and LC). AR is a recipient of the Guglielmina Lucatello e Gino Mazzega fel- lowship from the Fondazione Italiana per la Ricerca sul Cancro. EZ is a recipient of the Nella Orlandini fellowship from the Fondazione Italiana per la Ricerca sul Cancro. CDV and EMCM are recipients of post-doctoral fellowships from the Fondazione Umberto Veronesi.
References
1. Patriarca F, Luznik L, Medeot M, et al. Experts' considerations on HLA-haploiden- tical stem cell transplantation. Eur J Haematology. 2014;93(3):187-197.
2. Luznik L, O'Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow trans- plantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophos- phamide. Biol Blood Marrow Transplant. 2008;14(6):641-650.
3. Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA- mismatched related bone marrow or unre- lated double umbilical cord blood grafts. Blood. 2011;118(2):282-288.
4. Castagna L, Crocchiolo R, Furst S, et al. Bone marrow compared with peripheral blood stem cells for haploidentical trans- plantation with a nonmyeloablative condi- tioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20(5):724-729.
5. Imamura M, Tanaka J. Immunoregulatory cells for transplantation tolerance and graft- versus-leukemia effect. Int J Hematol. 2003;78(3):188-194.
6. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoiet- ic transplants. Science. 2002; 295(5562):2097-2100.
7. Moretta L, Locatelli F, Pende D, Marcenaro E, Mingari MC, Moretta A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117(3):764-771.
8. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-49.
9. Ljunggren HG, Karre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 1990; 11(7):237-244.
10. Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-medi- ated cytolysis. Annu Rev Immunol. 2001; 19:197-223.
11. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225-74.
Hodgkin's lymphoma. Bone Marrow
Transplant. 2014;49(2):190-194.
21. Roberto A, Castagna L, Gandolfi S, et al. B- cell reconstitution recapitulates B-cell lym- phopoiesis following haploidentical BM transplantation and post-transplant CY. Bone Marrow Transplant. 2015;50(2):317-
12. Castagna L, Mavilio D. Re-discovering NK 319.
cell allo-reactivity in the therapy of solid
tumors. J Immunother Cancer. 2016;4:54. 13. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633-
640.
14. Lugli E, Marcenaro E, Mavilio D. NK cell
subset redistribution during the course of viral infections. Front Immunol. 2014;5:390.
15. Takahashi E, Kuranaga N, Satoh K, et al. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. Scand J Immunol. 2007;65(2):126-138.
16. Fan YY, Yang BY, Wu CY. Phenotypically and functionally distinct subsets of natural killer cells in human PBMCs. Cell Biol Int. 2008;32(2):188-197.
17. Penack O, Gentilini C, Fischer L, et al. CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets. Leukemia. 2005;19(5):835-840.
18. Stabile H, Nisti P, Morrone S, et al. Multifunctional human CD56 low CD16 low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients. Haematologica. 2015;100(4):489-498.
19. Helena S, Paolo N, Giovanna P, et al. Reconstitution of multifunctional CD56lowCD16low natural killer cell sub- set in children with acute leukemia given alpha/beta T cell-depleted HLA-haploiden- tical haematopoietic stem cell transplanta- tion. Oncoimmunology. 2017;9(9):e1342024.
22. Roberto A, Castagna L, Zanon V, et al. Role of naive-derived T memory stem cells in T- cell reconstitution following allogeneic transplantation. Blood. 2015;125(18):2855- 2864.
23. Gupta N, Arthos J, Khazanie P, et al. Targeted lysis of HIV-infected cells by nat- ural killer cells armed and triggered by a recombinant immunoglobulin fusion pro- tein: implications for immunotherapy. Virology. 2005;332(2):491-497.
24. Imamura M, Tsutsumi Y, Miura Y, Toubai T, Tanaka J. Immune reconstitution and tol- erance after allogeneic hematopoietic stem cell transplantation. Hematology. 2003; 8(1):19-26.
25. Russo A, Oliveira G, Berglund S, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018;131(2):247-262.
26. Dulphy N, Haas P, Busson M, et al. An unusual CD56(bright) CD16(low) NK cell subset dominates the early posttransplant period following HLA-matched hematopoietic stem cell transplantation. J Immunol. 2008;181(3):2227-2237.
27. Lugthart G, van Ostaijen-ten Dam MM, van Tol MJ, Lankester AC, Schilham MW. CD56(dim)CD16(-) NK cell phenotype can be induced by cryopreservation. Blood. 2015;125(11):1842-1843.
28. Amir el AD, Davis KL, Tadmor MD, et al. viSNE enables visualization of high dimen- sional single-cell data and reveals pheno- typic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545-552.
29. Yu J, Freud AG, Caligiuri MA. Location and cellular stages of natural killer cell develop- ment. Trends Immunol. 2013;34(12):573-
20. Raiola A, Dominietto A, Varaldo R, et al. Unmanipulated haploidentical BMT fol-
lowing non-myeloablative conditioning 582.
and post-transplantation CY for advanced
30. Scoville SD, Freud AG, Caligiuri MA.
haematologica | 2018; 103(8)
1401


































































































   163   164   165   166   167