Page 132 - Haematologica August 2018
P. 132

J. Muller et al. References
1. Rollig C, Knop S, Bornhauser M. Multiple myeloma. Lancet. 2015;385(9983):2197- 2208.
2. Roodman GD. Pathogenesis of myeloma bone disease. J Cell Biochem. 2010;109(2):283-291.
3. Heusschen R, Muller J, Duray E, et al. Molecular mechanisms, current manage- ment and next generation therapy in myelo- ma bone disease. Leuk Lymphoma. 2018;59(1):14-28.
4. Galson DL, Silbermann R, Roodman GD. Mechanisms of multiple myeloma bone dis- ease. Bonekey Rep. 2012;1:135.
5. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteo- porosis management. Mayo Clin Proc. 2009;84(7):632-637.
6. Silbermann R, Roodman GD. Current con- troversies in the management of myeloma bone disease. J Cell Physiol. 2016;231(11):2374-2379.
7. Bolomsky A, Heusschen R, Schlangen K, et al. Maternal embryonic leucine zipper kinase is a novel target for proliferation- associated high-risk myeloma. Haematologica. 2018;103(2):325-335.
8. Pickard MR, Green AR, Ellis IO, et al. Dysregulated expression of Fau and MELK is associated with poor prognosis in breast cancer. Breast Cancer Res. 2009;11(4):R60.
9. Du T, Qu Y, Li J, et al. Maternal embryonic leucine zipper kinase enhances gastric can- cer progression via the FAK/Paxillin path- way. Mol Cancer. 2014;13:100.
10. Wang Y, Lee YM, Baitsch L, et al. MELK is an oncogenic kinase essential for mitotic pro- gression in basal-like breast cancer cells. Elife. 2014;3:e01763.
11. Ganguly R, Hong CS, Smith LG, Kornblum HI, Nakano I. Maternal embryonic leucine zipper kinase: key kinase for stem cell phe- notype in glioma and other cancers. Mol Cancer Ther. 2014;13(6):1393-1398.
12. Joshi K, Banasavadi-Siddegowda Y, Mo X, et al. MELK-dependent FOXM1 phosphoryla- tion is essential for proliferation of glioma stem cells. Stem Cells. 2013;31(6):1051- 1063.
13. Kim SH, Joshi K, Ezhilarasan R, et al. EZH2 protects glioma stem cells from radiation- induced cell death in a MELK/FOXM1- dependent manner. Stem Cell Reports. 2015;4(2):226-238.
14. Gu C, Yang Y, Sompallae R, et al. FOXM1 is a therapeutic target for high-risk multiple myeloma. Leukemia. 2016;30(4):873-882.
15. Fang C, Qiao Y, Mun SH, et al. Cutting edge: EZH2 promotes osteoclastogenesis by epi- genetic silencing of the negative regulator IRF8. J Immunol. 2016;196(11):4452-4456.
16. Dudakovic A, Camilleri ET, Xu F, et al. Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J
Biol Chem. 2015;290(46):27604-27617.
17. Dudakovic A, Camilleri ET, Riester SM, et al. Enhancer of zeste homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletal- ly mature mice. J Biol Chem. 2016;
291(47):24594-24606.
18. Adamik J, Jin S, Sun Q, et al. EZH2 or
HDAC1 Inhibition reverses multiple myelo- ma-induced epigenetic suppression of osteoblast differentiation. Mol Cancer Res. 2017;15(4):405-417.
19. Heusschen R, Muller J, Binsfeld M, et al. SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma. Oncotarget. 2016;7(21):30712-30729.
20. Bolomsky A, Schreder M, Meissner T, et al. Immunomodulatory drugs thalidomide and lenalidomide affect osteoblast differentia- tion of human bone marrow stromal cells in vitro. Exp Hematol. 2014;42(7):516-525.
21. Binsfeld M, Muller J, Lamour V, et al. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget. 2016; 7(25):37931-37943.
22. Dempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28(1):2- 17.
23. Garrett IR, Boyce BF, Oreffo RO, et al. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990; 85(3):632-639.
24. Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL- induced osteoclast differentiation. Blood. 2005;106(3):852-859.
25. Bolomsky A, Heusschen R, Schlangen K, et al. Maternal embryonic leucine zipper kinase is a novel target for proliferation asso- ciated high-risk myeloma. Haematologica. 2018;103(2):325-335.
26. Chung S, Suzuki H, Miyamoto T, et al. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human can- cer. Oncotarget. 2012;3(12):1629-1640.
come and its inhibition by OTSSP167 abrogates proliferation and viability of ovarian cancer cells. Gynecol Oncol. 2017;145(1):159-166.
30. Kato T, Inoue H, Imoto S, et al. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells. Oncotarget. 2016;7(14):17652-17664.
31. Wei Y, Chen Y-H, Li L-Y, et al. CDK1-depen- dent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mes- enchymal stem cells. Nature Cell Biology. 2010;13:87.
32. Wu SC, Zhang Y. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of Zeste 2 (Ezh2) regulates its sta- bility. J Biol Chem. 2011;286(32):28511- 28519.
33. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079-3093.
34. Yuan Q, Jiang Y, Zhao X, et al. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res. 2014;29(3):693-704.
35. Kaneshiro S, Ebina K, Shi K, et al. IL-6 nega- tively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab. 2014;32(4):378-392.
36. Ishimi Y, Miyaura C, Jin CH, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297- 3303.
37. Verlinden L, Eelen G, Beullens I, et al. Characterization of the condensin compo- nent Cnap1 and protein kinase melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3. J Biol Chem. 2005;280(45):37319-37330.
38. Murata K, Fang C, Terao C, et al. Hypoxia- sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis. Immunity. 2017;47(1):66-79.e65.
39. Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. E2F1 effects on osteoblast dif- ferentiation and mineralization are mediat- ed through up-regulation of frizzled-1. Bone. 2013;56(2):234-241.
40. Caers J, Van Valckenborgh E, Menu E, Van Camp B, Vanderkerken K. Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro- environment. Bull Cancer. 2008;95(3):301-
27. Simon M, Mesmar F, Helguero L, Williams
C. Genome-wide effects of MELK-inhibitor
in triple-negative breast cancer cells indicate context-dependent response with p53 as a
key determinant. PLoS One. 2017; 12(2):e0172832. 313.
28. Lin A, Giuliano CJ, Sayles NM, Sheltzer JM. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on- going clinical trials. Elife. 2017;6.
29. Kohler RS, Kettelhack H, Knipprath- Meszaros AM, et al. MELK expression in ovarian cancer correlates with poor out-
41. Amoui M, Sheng MHC, Chen S-T, Baylink DJ, Lau KHW. A transmembrane osteoclas- tic protein-tyrosine phosphatase regulates osteoclast activity in part by promoting osteoclast survival through c-Src-dependent activation of NF B and JNK2. Arch Biochem Biophys. 2007;463(1):47-59.
1368
haematologica | 2018; 103(8)


































































































   130   131   132   133   134