Page 30 - Haematologica July
P. 30

J. Hrdinová et al.
Haemost 2009;7(10):1703-1710.
29. Ferrari S, Scheiflinger F, Rieger M, et al.
Prognostic value of anti-ADAMTS13 anti- body features (Ig isotype, titer, and inhibito- ry effect) in a cohort of 35 adult French patients undergoing a first episode of throm- botic microangiopathy with undetectable ADAMTS13 activity. Blood. 2007;109(7): 2815-2822.
30. Pos W, Sorvillo N, Fijnheer R, et al. Residues arg568 and phe592 contribute to an anti- genic surface for anti-adamts13 antibodies in the spacer domain. Haematologica. 2011;96(11):1670-1677.
31. Grillberger R, Casina VC, Turecek PL, Long Zheng X, Rottensteiner H, Scheiflinger F. Anti-ADAMTS13 IgG autoantibodies pres- ent in healthy individuals share linear epi- topes with those in patients with thrombotic thrombocytopenic purpura. Haematologica. 2014;99(4):2-4.
32. Arbuckle MR, McClain MT, Rubertone M V, et al. Development of autoantibodies before the clinical onset of systemic lupus erythe- matosus. N Engl J Med. 2003;349(16):1526- 1533.
33. Luken BM, Kaijen PHP, Turenhout EA, et al. Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/throm- bospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2006;4(11):2355-2364.
34. Pos W, Luken BM, Kremer Hovinga JA, et al. VH1-69 germline encoded antibodies direct- ed towards ADAMTS13 in patients with acquired thrombotic thrombocytopenic pur- pura. J Thromb Haemost. 2009;7(3):421-428.
35. Sui J, Hwang WC, Perez S, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009;16(3):265-273.
36. Marasca R, Vaccari P, Luppi M, et al. Immunoglobulin gene mutations and fre- quent use of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol. 2001;159(1):253- 261.
37. Schaller M, Vogel M, Kentouche K, Lämmle B, Kremer Hovinga JA. The splenic autoim- mune response to ADAMTS13 in thrombot- ic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs. Blood 2014;124(23):3469-3479.
38. Vanhoorelbeke K, De Meyer SF. Animal models for thrombotic thrombocytopenic purpura. J Thromb Haemost. 2013;11 (Suppl 1):2-10.
39. Ostertag EM, Bdeir K, Kacir S, et al. ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombo- cytopenic purpura: 2. Pathogenicity in an animal model. Transfusion. 2016;56(7): 1775-1785.
40. Tersteeg C, Schiviz A, De Meyer SF, et al. Potential for Recombinant ADAMTS13 as an Effective Therapy for Acquired Thrombotic Thrombocytopenic Purpura. Arterioscler Thromb Vasc Biol. 2015;35(11):2336-2342.
41. Deforche L, Tersteeg C, Roose E, et al. Generation of Anti-Murine ADAMTS13 Antibodies and Their Application in a Mouse Model for Acquired Thrombotic Thrombocytopenic Purpura. PLoS One. 2016;11(8):e0160388.
42. Froissart A, Buffet M, Veyradier A, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocy-
topenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med. 2012;40(1):104-111.
43. Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Rituximab reduces risk for relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2016;127 (24):3092-3094.
44. Peyvandi F, Lavoretano S, Palla R, et al. ADAMTS13 and anti-ADAMTS13 antibod- ies as markers for recurrence of acquired thrombotic thrombocytopenic purpura dur- ing remission. Haematologica. 2008;93(2): 232-239.
45. Coppo P, Wolf M, Veyradier A, et al. Prognostic value of inhibitory anti- ADAMTS13 antibodies in adult-acquired thrombotic thrombocytopenic purpura. Br J Haematol. 2006;132(1):66-74.
46. Alwan F, Vendramin C, Vanhoorelbeke K, et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune- mediated thrombotic thrombocytopenic purpura. Blood. 2017;130(4):466-471.
47. Klaus C, Plaimauer B, Studt JD, et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic pur- pura. Blood. 2004;103(12):4514-4519.
48. Luken BM, Turenhout EAM, Kaijen PHP, et al. Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 pro- vide a common antigenic core required for binding of antibodies in patients with acquired TTP. Thromb Haemost. 2006;96 (3):295-301.
49. Pos W, Crawley JTB, Fijnheer R, Voorberg J, Lane D a., Luken BM. An autoantibody epi- tope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood. 2010;115(8):1640-1649.
50. Yamaguchi Y, Moriki T, Igari A, et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res. 2011;128(2):169-173.
51. Jin S-Y, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor. Blood. 2010;115(11): 2300-2310.
52. Casina VC, Hu W, Mao J-H, et al. High-res- olution epitope mapping by HX MS reveals the pathogenic mechanism and a possible therapy for autoimmune TTP syndrome. Proc Natl Acad Sci. 2015;112(31):9620-9625.
53. Long Zheng X, Wu HM, Shang D, et al. Multiple domains of ADAMTS13 are tar- geted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura. Haematologica. 2010;95(9):1555- 1562.
54. Studt JD, Hovinga JAK, Radonic R, et al. Familial acquired thrombotic thrombocy- topenic purpura: ADAMTS13 inhibitory autoantibodies in identical twins. Blood. 2004;103(11):4195-4197.
55. Wallace DC, Lovric A, Clubb JS, Carseldine DB. Thrombotic thrombocytopenic purpura in four siblings. Am J Med. 1975;58(5):724- 734.
56. Joseph G, Smith KJ, Hadley TJ, et al. HLA- DR53 protects against thrombotic thrombo- cytopenic purpura/adult hemolytic uremic syndrome. Am J Hematol. 1994;47(3):189- 193.
57. Scully M, Brown J, Patel R, Mcdonald V,
Brown CJ, Machin S. Human leukocyte anti- gen association in idiopathic thrombotic thrombocytopenic purpura: Evidence for an immunogenetic link. J Thromb Haemost. 2010;8(2):257-262.
58. Coppo P, Busson M, Veyradier A, et al. HLA-DRB1*11: A strong risk factor for acquired severe ADAMTS13 deficiency- related idiopathic thrombotic thrombocy- topenic purpura in Caucasians. J Thromb Haemost. 2010;8(4):856-859.
59. John M-L, Hitzler W, Scharrer I. The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura. Ann Hematol. 2012;91(4):507-510.
60. Lombardi AM, Pulini S, Passeri C, et al. Familial acquired thrombotic thrombocy- topenic purpura: immunogenetic link with HLA-DRB1*11 and DQB1*03 antigens. Br J Haematol. 2017 Oct 26. [Epub ahead of print]
61. Coppo P, Bengoufa D, Veyradier A, et al. Severe ADAMTS13 deficiency in adult idio- pathic thrombotic microangiopathies defines a subset of patients characterized by various autoimmune manifestations, lower platelet count, and mild renal involvement. Medicine (Baltimore). 2004;83(4):233-244.
62. Coppo P, Schwarzinger M, Buffet M, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic throm- botic microangiopathies: the French TMA reference center experience. PLoS One. 2010;5(4):e10208.
63. Mancini I, Ricaño-Ponce I, Pappalardo E, et al. Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2016;14(12):2356-2367.
64. Bergseng E, Dørum S, Arntzen MØ, et al. Different binding motifs of the celiac dis- ease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous pep- tide repertoires. Immunogenetics. 2015;67 (2):73-84.
65. Miyadera H, Ohashi J, Lernmark Å, Kitamura T, Tokunaga K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J Clin Invest 2015;125(1):275-291.
66. Sorvillo N, van Haren SD, Kaijen PH, et al. Preferential HLA-DRB1*11-dependent pres- entation of CUB2-derived peptides by ADAMTS13-pulsed dendritic cells. Blood. 2013;121(17):3502-3510.
67. Verbij FC, Turksma AW, de Heij F, et al. CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura rec- ognize CUB2 domain-derived peptides. Blood. 2016;127(12):1606-1609.
68. Gilardin L, Delignat S, Peyron I, et al. The ADAMTS13(1239-1253) peptide is a domi- nant HLA-DR1-restricted CD4+ T-cell epi- tope. Haematologica. 2017;102(11):1833- 1841.
69. Hrdinova J, Verbij FC, Kaijen PHP, et al. Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ. Haematologica. 2018 Mar 22. [Epub ahead of print].
70. Roriz M, Landais M, Desprez J, et al. Risk Factors for Autoimmune Diseases Development After Thrombotic Thrombocytopenic Purpura. Medicine (Baltimore). 2015;94(42):e1598.
71. George JN, Vesely SK, Terrell DR. The Oklahoma Thrombotic Thrombocytopenic Purpura-Hemolytic Uremic Syndrome
1108
haematologica | 2018; 103(7)


































































































   28   29   30   31   32