Page 35 - Haematologica June
P. 35

Chronic lymphocytic leukemia with trisomy 12
15. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior out- comes following reduced-intensity con- ditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82-87.
16. Buhmann R, Kurzeder C, Rehklau J, et al. CD40L stimulation enhances the ability of conventional metaphase cytogenetics to detect chromosome aberrations in B-cell chronic lymphocytic leukaemia cells. Br J Haematol. 2002;118(4):968-975.
17. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonu- cleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152-3160.
18. Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
19. Quijano S, Lopez A, Rasillo A, et al. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74(3):139-149.
20. Stilgenbauer S, Dohner K, Bentz M, Lichter P, Dohner H. Molecular cytogenetic analysis of B-cell chronic lymphocytic leukemia. Ann Hematol. 1998;76(3-4):101-110.
21. Cuneo A, Bigoni R, Rigolin GM, et al. Late appearance of the 11q22.3-23.1 deletion involving the ATM locus in B-cell chronic lymphocytic leukemia and related disor- ders. Clinico-biological significance. Haematologica. 2002;87(1):44-51.
22. Dohner H, Stilgenbauer S, Fischer K, Bentz M, Lichter P. Cytogenetic and molecular cytogenetic analysis of B cell chronic lym- phocytic leukemia: Specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia. 1997;11 Suppl 2:S19-S24.
23. Mato A, Nabhan C, Kay NE, et al. Real- world clinical experience in the Connect chronic lymphocytic leukaemia registry: a prospective cohort study of 1494 patients across 199 US centres. Br J Haematol. 2016;175(5):892-903.
24. Sindelarova L, Michalova K, Zemanova Z, et al. Incidence of chromosomal anomalies detected with FISH and their clinical correla- tions in B-chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2005;160(1):27- 34.
25. Strati P, Abruzzo LV, Wierda WG, O'Brien S, Ferrajoli A, Keating MJ. Second cancers and Richter transformation are the leading caus- es of death in patients with trisomy 12 chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(7):420- 427.
26. Huh YO, Schweighofer CD, Ketterling RP, et al. Chronic lymphocytic leukemia with t(14; 19)(q32; q13) is characterized by atypi- cal morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol. 2011;135(5):686-696.
27. Sellmann L, Gesk S, Walter C, et al. Trisomy 19 is associated with trisomy 12 and mutat- ed IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol. 2007;138(2):217- 220.
28. Daudignon A, Poulain S, Morel P, et al. Increased trisomy 12 frequency and a biased IgVH 3-21 gene usage characterize small lymphocytic lymphoma. Leuk Res.
2010;34(5):580-584.
29. Santos FP, O’Brien S. Small lymphocytic
lymphoma and chronic lymphocytic leukemia: are they the same disease? Cancer J. 2012;18(5):396-403.
30. Lopez C, Delgado J, Costa D, et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromo- somal alterations. Genes Chromosomes Cancer. 2012;51(9):881-889.
31. Rossi D, Cerri M, Capello D, et al. Biological and clinical risk factors of chronic lympho- cytic leukaemia transformation to Richter syndrome. Br J Haematol. 2008;142(2):202- 215.
32. Yi S, Li Z, Zou D, et al. Intratumoral genetic heterogeneity and number of cytogenetic aberrations provide additional prognostic significance in chronic lymphocytic leukemia. Genet Med. 2017;19(2):182-191.
33. Falisi E, Novella E, Visco C, et al. B-cell receptor configuration and mutational analysis of patients with chronic lympho- cytic leukaemia and trisomy 12 reveal recur- rent molecular abnormalities. Hematol Oncol. 2014;32(1):22-30.
34. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal muta- tions in chronic lymphocytic leukemia. Cell. 2013;152(4):714-726.
35. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
36. Zent CS, Ding W, Schwager SM, et al. The prognostic significance of cytopenia in chronic lymphocytic leukaemia/small lym- phocytic lymphoma. Br J Haematol. 2008;141(5):615-621.
37. Strati P, Caligaris-Cappio F. A matter of debate in chronic lymphocytic leukemia: is the occurrence of autoimmune disorders an indicator of chronic lymphocytic leukemia therapy? Curr Opin Oncol. 2011;23(5):455- 460.
38. Athanasiadou A, Stamatopoulos K, Tsompanakou A, et al. Clinical, immunophenotypic, and molecular profiling of trisomy 12 in chronic lymphocytic leukemia and comparison with other kary- otypic subgroups defined by cytogenetic analysis. Cancer Genet Cytogenet. 2006;168 (2):109-119.
39. Matutes E, Oscier D, Garcia-Marco J, et al. Trisomy 12 defines a group of CLL with atypical morphology: Correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 1996;92(2): 382-388.
40. Nowakowski GS, Hoyer JD, Shanafelt TD, et al. Percentage of smudge cells on routine blood smear predicts survival in chronic lymphocytic leukemia. J Clin Oncol. 2009;27(11):1844-1849.
41. Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22(3):339-348.
42. Johansson P, Eisele L, Klein-Hitpass L, et al. Percentage of smudge cells determined on routine blood smears is a novel prognostic factor in chronic lymphocytic leukemia. Leuk Res. 2010;34(7):892-898.
43. Rizzo D, Lotay A, Gachard N, et al. Very low levels of surface CD45 reflect CLL cell fragility, are inversely correlated with tri- somy 12 and are associated with increased treatment-free survival. Am J Hematol. 2013;88(9):747-753.
44. Cro L, Ferrario A, Lionetti M, et al. The clin-
ical and biological features of a series of immunophenotypic variant of B-CLL. Eur J Haematol. 2010;85(2):120-129.
45. Deaglio S, Morra M, Mallone R, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998;160(1):395-402.
46. Riches JC, O’Donovan CJ, Kingdon SJ, et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signal- ing that is modulated by NOTCH1 muta- tions. Blood. 2014;123(26):4101-4110.
47. Moreau C, Liu Q, Graeff R, et al. CD38 structure-based inhibitor design using the 1- cyclic inosine 50-diphosphate ribose tem- plate. PLoS One. 2013;8(6):e66247.
48. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lym- phocytic leukemia. Blood. 1999;94(6):1840- 1847.
49. Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin vari- able region mutations are independent prog- nostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023-1029.
50. Jelinek DF, Tschumper RC, Geyer SM, et al. Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B- chronic lymphocytic leukaemia. Br J Haematol. 2001;115(4):854-861.
51. D’Arena G, Musto P, Cascavilla N, et al. CD38 expression correlates with adverse biological features and predicts poor clinical outcome in B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2001;42(1- 2):109-114.
52. Brachtl G, Pinon Hofbauer J, Greil R, Hartmann TN. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann Hematol. 2014;93(3):361-374.
53. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lym- phocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical out- come, and distinct gene expression profile. Blood. 2003;101(12):4944-4951.
54. Crespo M, Bosch F, Villamor N, et al. ZAP- 70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348(18):1764-1775.
55. Tam CS, Otero-Palacios J, Abruzzo LV, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic sub- type: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141(1):36-40.
56. Gattei V, Bulian P, Del Principe MI, et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood. 2008;111(2):865-873.
57. Shanafelt TD, Geyer SM, Bone ND, et al. CD49d expression is an independent predic- tor of overall survival in patients with chron- ic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol. 2008;140(5):537-546.
58. Dal Bo M, Bomben R, Zucchetto A, et al. Microenvironmental interactions in chronic lymphocytic leukemia: hints for pathogene- sis and identification of targets for rational therapy. Curr Pharm Des. 2012;18(23):3323- 3334.
59. Zucchetto A, Caldana C, Benedetti D, et al. CD49d is overexpressed by trisomy 12
haematologica | 2018; 103(6)
937


































































































   33   34   35   36   37