Page 134 - Haematologica June
P. 134

1036
D. Drandi et al.
methodological validation are currently ongoing, both at national and European levels.
In conclusion, our study shows that ddPCR is a feasible and highly sensitive assay for MYD88L265P mutational screening and MRD monitoring in WM, particularly in samples harboring low concentrations of circulating tumor cells. For this reason, plasma ctDNA represents a promising tissue source, and might be an attractive, less invasive alternative to BM for MYD88L265P detection, also beyond the scenario of WM.
Acknowledgments
The authors would like to thank all the patients who partici- pated in the study. We are grateful to Luca Arcaini, Alfredo Benso, Stefano Di Carlo, Angelo Fama, Paola Ghione, Idanna Innocenti, Luca Laurenti, Giacomo Loseto, Gianfranco Politano,
Marzia Varettoni and Silvia Zibellini for their scientific advice and to Antonella Fiorillo and Sonia Perticone for administrative support.
This work was supported by: Progetto di Rilevante Interesse Nazionale (PRIN2009) from Ministero Italiano dell'Università e della Ricerca (MIUR), Roma, Italy [7.07.02.60 AE01]; Progetto di Ricerca Sanitaria Finalizzata 2009 [RF-2009-1469205] and 2010 [RF-2010-2307262 to S.C.], A.O.S. Maurizio, Bolzano/Bozen, Italy; Fondi di Ricerca Locale, Università degli Studi di Torino, Italy; Fondazione Neoplasie Del Sangue (Fo.Ne.Sa), Torino, Italy; Associazione Da Rosa, Torino, Italy; Comitato Regionale Piemontese (Gigi Ghirotti),Italy and Ricerca biomedica condotta da giovani ricercatori - Fondazione Cariplo (project codes: 2016-0476), Dr.Jiménez was supported by a grant from the Sociedad Espanola de Hematologia y Hemoterapia (SEHH) 2016.
References
1. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826–833.
2. Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122(7): 1222–1232.
3. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classi- fication of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019– 5032.
4. Jiménez C, Sebastián E, Chillón MC, et al. MYD88 L265P is a marker highly charac- teristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia. 2013;27(8): 1722–1728.
5. Poulain S, Roumier C, Decambron A, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121(22): 4504–4511.
6. Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenstrom macroglobuline- mia, immunoglobulin M monoclonal gam- mopathy, and other B-cell lymphoprolifer- ative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121(11):2051– 2058.
7. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470 (7332):115–119.
8. Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121(13):2522–2528.
9. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375– 2390.
10. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in
Waldenstrom macroglobulinemia. Blood.
2014;123(18):2791–2796.
11. Treon SP. How I treat Waldenström
macroglobulinemia. Blood. 2009;114(12):
2375–2385.
12. Treon SP, Xu L, Hunter Z. MYD88
Mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N Engl J Med. 2015;373(6):584–586.
13. Leblond V, Kastritis E, Advani R, et al. Treatment recommendations from the Eighth International Workshop on Waldenström’s Macroglobulinemia. Blood. 2016;128(10):1321–1328.
14. Castillo JJ, Hunter ZR, Yang G, Argyropoulos K, Palomba ML, Treon SP. Future therapeutic options for patients with Waldenström macroglobulinemia. Best Pract Res Clin Haematol. 2016;29 (2):206–215.
15. Abeykoon JP, Yanamandra U, Kapoor P. New developments in the management of Waldenström macroglobulinemia. Cancer Manag Res. 2017;973–983.
16. Hunter ZR, Yang G, Xu L, Liu X, Castillo JJ, Treon SP. Genomics, signaling, and Treatment of Waldenström macro- globulinemia. J Clin Oncol. 2017;35(9): 994–1001.
17. Tedeschi A, Picardi P, Ferrero S, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenström macroglobulinemia. Leuk Lymphoma. 2015;56(9):2637–2642.
18. Kyle RA. Long-term follow-up of IgM monoclonal gammopathy of undeter- mined significance. Blood. 2003;102(10): 3759–3764.
19. Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med. 2012;367(23):2255-2257.
20. Varettoni M, Zibellini S, Arcaini L, et al. MYD88 (L265P) mutation is an independ- ent risk factor for progression in patients with IgM monoclonal gammopathy of undetermined significance. Blood. 2013; 122(13):2284–2285.
21. Jiménez C, Chillón Mdel C, Balanzategui A, et al. Detection of MYD88 L265P muta- tion by real-time sllele-specific oligonu- cleotide polymerase chain reaction. Appl Immunohistochem Mol Morphol. 2014;22 (10):768–773.
22. Gustine JN, Meid K, Hunter ZR, Xu L, Treon SP, Castillo JJ. MYD88 mutations can be
used to identify malignant pleural effusions in Waldenström macroglobulinaemia. Br J Haematol. 2018;180(4):578-581.
23. Komatsubara KM, Sacher AG. Circulating tumor DNA as a liquid biopsy: current clinical applications and future directions. Oncology. 2017;31(8):618–627.
24. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83 (22):8604–8610.
25. Huggett JF, Whale A. Digital PCR as a novel technology and its potential implica- tions for molecular diagnostics. Clin Chem. 2013;59(12):1691–1693.
26. Ladetto M, Donovan JW, Harig S, et al. Real-Time polymerase chain reaction of immunoglobulin rearrangements for quan- titative evaluation of minimal residual dis- ease in multiple myeloma. Biol Blood Marrow Transplant. 2000;6(3):241–253.
27. van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrange- ments: guidelines for interpretation of real- time quantitative PCR data. Leukemia. 2007;21(4):604–611.
28. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Hoboken, NJ, USA. John Wiley & Sons, Inc.; 2003.
29. Uchiyama Y, Nakashima M, Watanabe S, et al. Ultra–sensitive droplet digital PCR for detecting a low–prevalence somatic GNAQ mutation in Sturge–Weber syn- drome. Sci Rep. 2016;6(1):22985.
30. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lym- phomagenesis. Blood. 2014;123 (11):1637– 1646.
31. Drandi D, Kubiczkova-Besse L, Ferrero S, et al. Minimal residual disease detection by droplet digital PCR in multiple myelo- ma, mantle cell lymphoma, and follicular lymphoma. J Mol Diagnostics. 2015;17 (6):652–660.
32. Petrikkos L, Kyrtsonis M-C, Roumelioti M, et al. Clonotypic analysis of immunoglob- ulin heavy chain sequences in patients with Waldenström’s macroglobulinemia:
haematologica | 2018; 103(6)


































































































   132   133   134   135   136