Page 115 - Haematologica June
P. 115

Leukemia initiating cells in ALL
17. Shapiro HM. Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry. 1981;2(3):143-150.
18. Wilpshaar J, Falkenburg JH, Tong X, et al. Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice. Blood. 2000;96(6):2100-2107.
19. Darzynkiewicz Z, Juan G, Srour EF. Differential staining of DNA and RNA. Curr Protoc Cytom. 2004;Chapter 7:Unit 7.3.
20. Dick JE, Bhatia M, Gan O, Kapp U, Wang JC. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997;15 (Suppl 1):199-203; discussion 204-197.
21. Borowitz MJ, Shuster JJ, Civin CI, et al. Prognostic significance of CD34 expression in childhood B-precursor acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol. 1990;8(8):1389-1398.
22. Pui CH, Hancock ML, Head DR, et al. Clinical significance of CD34 expression in childhood acute lymphoblastic leukemia. Blood. 1993;82(3):889-894.
23. Darzynkiewicz Z, Sharpless T, Staiano- Coico L, Melamed MR. Subcompartments of the G1 phase of cell cycle detected by flow cytometry. Proc Natl Acad Sci USA. 1980;77(11):6696-6699.
24. Darzynkiewicz Z, Traganos F, Melamed MR. New cell cycle compartments identi- fied by multiparameter flow cytometry. Cytometry. 1980;1(2):98-108.
25. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298 (5593):601-604.
26. Georgantas RW 3rd, Tanadve V, Malehorn M, et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 2004;64(13):4434-4441.
27. Gal H, Amariglio N, Trakhtenbrot L, et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 2006;20(12):2147-2154.
28. Jaatinen T, Hemmoranta H, Hautaniemi S, et al. Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells. 2006;24(3):631-641.
29. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304(24):2706-2715.
30. Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446-451.
31. Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition targets oxidative phospho- rylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329-341.
32. Romero-Moya D, Bueno C, Montes R, et al. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica. 2013;98(7):1022-1029.
33. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self- renewal of haematopoietic stem cells. Nature. 2004;431(7011):997-1002.
34. Giambra V, Jenkins CR, Wang H, et al. NOTCH1 promotes T cell leukemia-initiat- ing activity by RUNX-mediated regulation of PKC-theta and reactive oxygen species. Nat Med. 2012;18(11):1693-1698.
35. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL. Functional het- erogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol. 1993;122(4):897-902.
36. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phe- notype. Immunity. 1994;1(8):661-673.
37. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF. Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0 /G1 phase of the cell cycle. Blood. 1997;90(11):4384-4393.
38. Gothot A, van der Loo JC, Clapp DW, Srour EF. Cell cycle-related changes in repopulat- ing capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood. 1998;92(8):2641-2649.
39. Glimm H, Oh IH, Eaves CJ. Human hematopoietic stem cells stimulated to pro- liferate in vitro lose engraftment potential
during their S/G(2)/M transit and do not
reenter G(0). Blood. 2000;96(13):4185-4193. 40. Ebinger S, Ozdemir EZ, Ziegenhain C, et al. Characterization of rare, dormant, and ther- apy-resistant cells in acute lymphoblastic
leukemia. Cancer Cell. 2016;30(6):849-862. 41. Greaves M. Cancer stem cells renew their
impact. Nat Med. 2011;17(9):1046-1048.
42. Morisot S, Wayne AS, Bohana-Kashtan O, et al. High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias. Leukemia.
2010;24(11):1859-1866.
43. Cox CV, Evely RS, Oakhill A, Pamphilon
DH, Goulden NJ, Blair A. Characterization of acute lymphoblastic leukemia progenitor cells. Blood. 2004;104(9):2919-2925.
44. Castor A, Nilsson L, Astrand-Grundstrom I, et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblas- tic leukemia. Nat Med. 2005;11(6):630-637.
45. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR con- trols cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukary- otic translation initiation factor 4E. Mol Cell Biol. 2004;24(1):200-216.
46. Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/ p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol. 2004;287(2): C281-291.
47. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell. 2007;129(6):1081-1095.
48. Churchman ML, Evans K, Richmond J, et al. Synergism of FAK and tyrosine kinase inhi- bition in Ph+ B-ALL. JCI. 2016;1(4):
49. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132 (4):598-611.
50. Golan K, Wellendorf A, Takihara Y, et al. Mitochondria transfer from hematopoietic stem and progenitor cells to Pdgfr +/Sca-1- /CD48dim BM stromal cells via CX43 gap junctions and AMPK signaling inversely reg- ulate ROS generation in both cell popula- tions. Blood. 2016;128(22):5
haematologica | 2018; 103(6)
1017


































































































   113   114   115   116   117